LOGIX INSULATED CONCRETE FORMS
 DESIGN MANUAL (CAN)

Build Anything Better. ${ }^{\text {TM }}$

1.0 - SYSTEM OVERVIEW

1.1 - APPLICATION \& USE 1-3
1.2 - PRODUCT SPECIFICATION TABLE 1-5
1.3 - ACCESSORIES 1-11

1.1 - APPLICATION \& USE

Logix Insulated Concrete Forms are used to create solid reinforced concrete walls that are pre-insulated for use both above-and below-grade. Logix walls are particularly effective for residential, multi-residential, commercial, institutional, and industrial buildings.

Logix is available in a wide variety of special form units and accessories, including corners, brick ledges, straight panels, t-walls, pilasters, and knock-down forms permit the Logix system to be adapted to many different situations. Logix forms are available in 8 inch (203 mm), 12 inch (305 mm) and 16 inch (406 mm) height for additional design flexibility. See Section "1.2-PRODUCT SPECIFICATION TABLE" on page 5.

Typical ICF Components

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

1.1 - APPLICATION \& USE cont'd

1.2 - PRODUCT SPECIFICATION TABLE

Logix manufactures both assembled and unassembled insulated concrete form units. Logix assembled forms, known as "Logix PRO", are delivered to the job site as assembled form blocks. Logix unassembled forms (or knock-down forms), known as "Logix KD", are delivered to the job site in components that make up the form blocks - the form panels and KD Connectors. Logix KD are assembled on the job site.

Below is a summary of the types of Logix PRO and Logix KD forms available. However, contact a local Logix representative for availability of specific Logix products.

Logix PRO (assembled form blocks)

	DESCRIPTION
Logix Pro	White in color
Logix Pro Platinum ${ }^{3}$	Offers higher R-value ${ }^{1}$ than Logix Pro. Grey in color. Made with BASF Neopor.
Logix Pro TX	Logix Pro with termite resistant additive Preventol 2. White in color.
Logix Pro Platinum ${ }^{3}$ TX	Logix Pro Platinum with Preventol. Grey in color.

Logix KD (unassembled form blocks)

	DESCRIPTION
Logix KD	White in color
Logix KD Platinum ${ }^{3}$	Offers higher R-value ${ }^{1}$ than Logix KD. Grey in color. Made with BASF Neopor.
Logix KD TX	Logix KD with termite resistant additive Preventol 2. White in color.
Logix KD Platinum ${ }^{3}$ TX	Logix KD Platinum with Preventol. Grey in color.

Notes:

1. See Section 8.5 for Logix R-values.
2. Preventol is an effective termite resistant additive.
3. Care should be taken to protect exposed foam surfaces from reflected sunlight and prolonged solar exposure until wall cladding or finish material is applied. Shade exposed foam areas, or remove sources of reflective surfaces, where heat build up onto exposed foam might occur. For more information refer to BASF Technical Leaflet N-4 Neopor, "Recommendations for packaging, transporting, storing and installing building insulation products made from Neopor EPS foam." (The BASF Technical Leaflet is attached to every bundle of Logix Platinum forms delivered to a job site).

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

1.2 - PRODUCT SPECIFICATION TABLE cont'd

LOGIX FORM PANELS	STANDARD					TAPER TOP					BRICK LEDGE				
只															
Conc.Core Thickness	4	6.25	8	10	12	4	6.25	8	10	12	4	6.25	8	10	12
Width Top ${ }^{1}$	9.5	11.75	13.5	15.5	17.5	9.5	11.75	13.5	15.5	17.5	13.375	15.625	17.375	19.375	21.375
Width Bot. ${ }^{1}$	9.5	11.75	13.5	15.5	17.5	9.5	11.75	13.5	15.5	17.5	9.5	11.75	13.5	15.5	17.5
Form Type ${ }^{2}$	KD/P	KD/P	KD/P	KD/P	KD	KD	KD/P	KD/P	KD/P	KD	KD/P	KD/P	KD/P	KD/P	KD
Conc.Core Thickness						4	6.25	8	10	12	4	6.25	8	10	12
Width Top ${ }^{1}$						9.5	11.75	13.5	15.5	17.5	13.375	15.625	17.375	19.375	21.375
Width Bot. ${ }^{1}$						9.5	11.75	13.5	15.5	17.5	9.5	11.75	13.5	15.5	17.5
Form Type ${ }^{2}$						KD									
Conc.Core Thickness											4	6.25	8	10	12
Width Top ${ }^{1}$											17.25	19.5	21.25	23.25	25.25
Width Bot. ${ }^{1}$											9.5	11.75	13.5	15.5	17.5
Form Type ${ }^{2}$											KD	KD	KD	KD	KD

1. Width at Top and Bottom is measured from outside face to outside face of forms.
2. "KD" and "P" denotes Logix KD (unassembled forms) and Logix PRO (assembled forms), respectively.

3. "KD" and "P" denotes Logix KD (unassembled forms) and Logix PRO (assembled forms), respectively.

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

1.2 - PRODUCT SPECIFICATION TABLE cont'd

1. "KD" and "P" denotes Logix KD (unassembled forms) and Logix PRO (assembled forms), respectively.

2. Height of forms for Half Height Forms $=8$ inches

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

1.2 - PRODUCT SPECIFICATION TABLE cont'd

V12 Logix FORM PANELS	V12 STANDARD					V12 TAPER TOP				
足										
Conc.Core Thickness	4	6.25	8	10		4	6.25	8	10	12
Width Top ${ }^{1}$	-	11.75	13.5				11.75	13.5		
Width Bot. ${ }^{1}$		11.75	13.5				11.75	13.5		
Form Type ${ }^{2}$	-	KD/P	KD/P				KD/P	KD/P	-	-

	V12 Left Hand Corner Form	V12 Right Hand Corner Form
Form Type ${ }^{1}$	KD/P	KD/P
Form Type ${ }^{1}$	KD/P	KD/P
Form Type ${ }^{1}$	KD/P	KD/P

1. Width at Top and Bottom is measured from outside face to outside face of forms.
2. "KD" and "P" denotes Logix KD (unassembled forms) and Logix PRO (assembled forms), respectively.

1.3 －ACCESSORIES

2.0 - INSTALLATION GUIDE

2.1 - INTRODUCTION 2-4
2.2 - USEFUL TOOLS \& MATERIALS 2-5
2.3 - ACCURATE FOOTINGS \& SLABS 2-6
2.4 - WALL LAYOUT 2-7
2.5 - PRODUCT HANDLING \& PLACEMENT 2-8
2.6 - JOBSITE EFFICIENCY 2-9
2.7 - LOGIX WALL CONSTRUCTION 2-10
2.7.1 - THE FIRST COURSE 2-11
2.7.2 - THE SECOND COURSE 2-13
2.7.3 - ADDITIONAL COURSES 2-16
2.7.4 - CORNER BRICK LEDGE. 2-18
2.7.5 - KNOCK-DOWN FORMS 2-20
2.7.5.1 - PRODUCT HANDLING 2-21
2.7.5.2 - ASSEMBLING AND INSTALLATION 2-21
2.7.5.3 - CORNER FORM SUPPORT 2-22
2.7.6 - TEE WALLS 2-23
2.7.6.1 - FIELD-CUT T-WALLS 2-24
2.7.7 - GABLE WALLS 2-25
2.7.8 - RADIUS WALLS 2-26
2.7.9 - LOGIX D-RV 2-27
2.8 - REINFORCEMENT 2-28
2.8.1 - BASIC REINFORCEMENT 2-28
2.8.2 - HORIZONTAL \& VERTICAL REINFORCEMENT 2-29
2.8.3 - TYPICAL REINFORCEMENT AT OPENINGS 2-30
2.8.4 - LINTELS 2-31
2.9 - WINDOW \& DOOR BUCKS 2-32
2.9.1 - LOGIX PRO BUCK 2-33
2.9.2 - TREATED PLYWOOD BUCK 2-38
2.9.3 - SOLID WOOD BUCK 2-39
2.9.4 - RADIUS OPENINGS 2-40
2.9.5 - METAL JAMBS 2-41
2.10 - ADDITIONAL FORM SUPPORT 2-42
2.11 - WALL BRACING \& ALIGNMENT SYSTEM 2-44

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

TABLE OF CONTENTS

2.12 - FLOOR CONNECTIONS2-452.12.1 - LEDGER WITH ANCHOR BOLTS \& JOIST HANGERS 2-45
2.12.2 - STEEL ANGLE IRON LEDGER 2-46
2.12.3 - BRICK LEDGE FOR TOP \& BOTTOM CHORD BEARING SYSTEMS 2-48
2.12.4 - LEDGER WITH SIMPSON BRACKET \& JOIST HANGERS 2-49
2.12.5 - TRANSITION LEDGE 2-52
2.12.5.2 - TRANSITION LEDGE WITH CORNER BLOCKS 2-53
2.12.6 - TAPER TOP WITH SILL PLATE 2-55
2.12.7 - CONCRETE FLOOR SYSTEMS 2-56
2.12.7.1 - PRECAST CONCRETE FLOORS 2-56
2.12.7.2 - COMPOSITE FLOOR SYSTEMS 2-57
2.13 - ROOF CONNECTIONS 2-58
2.14 - SERVICE PENETRATIONS 2-59
2.15 - CONCRETE PLACEMENT 2-60
2.15 .1 - PRE-PLACEMENT CHECKLIST 2-60
2.15.2 - MIX DESIGN 2-61
2.15.3 - BEST PRACTICES 2-62
2.15.4 - PLACING CONCRETE 2-63
2.15.5 - POST-PLACEMENT CHECKLIST 2-64
2.16 - ELECTRICAL INSTALLATIONS 2-65
2.17 - PLUMBING INSTALLATIONS 2-66
2.18 - INTERIOR \& EXTERIOR FINISHES 2-67
2.18.1 - VAPOR \& AIR BARRIERS 2-67
2.18.2 - INTERIOR DRYWALL 2-68
2.18.3 - EXTERIOR SIDING 2-69
2.18.4 - STEEL PANEL SIDING 2-70
2.18.5 - WOOD SIDING 2-71
2.18 .6 - EIFS 2-72
2.18.8 - CEMENT COMPOSITE SIDING 2-73
2.18.9 - BRICK VENEER 2-74
2.18.10 - BELOW GRADE WATERPROOFING, DAMPPROOFING \& PARGING 2-75
2.18.10.1 - BELOW GRADE WATERPROOFING 2-75
2.18.10.2 - ABOVE GRADE PARGING 2-77

TABLE OF CONTENTS

2.19 - ATTACHING FIXTURES 2-78
2.19.1-LIGHT WEIGHT FIXTURES 2-78
2.19.2 - HEAVY WEIGHT FIXTURES 2-79
2.19.2.1 - CABINETS 2-79
2.19.2.2 - GRAB BARS 2-80
2.20 - HOLDING POWER OF SCREWS FASTENED TO LOGIX FURRING TABS 2-82
2.21 - RADIUS WALLS 2-83
2.22 - TALL WALLS 2-92
2.23 - SUPPORTING PRODUCTS 2-94

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.1 - INTRODUCTION

For builders who want a competitive edge, Logix offers solid products and friendly local service. Our products are designed to perform better in the field, providing trouble-free, profitable installations time after time.

Our technical team is ready to respond to your queries with practical advice on quick and efficient installation. With contractor training provided through our numerous regional technical support offices, help is always close at hand.

We are the most experienced ICF manufacturers in North America, manufacturing top quality products at our nine plants located throughout the United States and Canada.

For more information, or to contact a Logix representative, visit our website at www.Logixicf.com and click "Contact Us". You can also register online to receive Logix updates.

This manual will be updated regularly. Current updates will be available at www.Logixicf.com.

2.2 - USEFUL TOOLS \& MATERIALS

- Pruning saw
- Cordless drill
- Screws
- Hot knife
- Electric chainsaw
- Fiberglass-reinforced tape
- Step ladder
- Rebar bender/cutter
- Internal vibrator
- Contractor-grade foam gun
- Low expansion foam adhesive
- Approved scaffold planks
- Transit or laser
- 48" (1220mm) level
- Bolt cutters
- String line
- Chalk line
- Wall alignment system (safety compliant)
- 36 inch (914 mm) plastic zip ties, or Logix Vertical \& Horizontal Hooks
- Concrete embedments
- Window and door buck material
- Sleeves for wall penetrations

NOTE: For more information on Logix Vertical \& Horizontal Hooks see Technical Bulletin No. 20

2.3 - ACCURATE FOOTINGS \& SLABS

The first step to a successful Logix installation is an accurate footing or slab. This means a footing or slab that is:

- Code compliant
- Designed in accordance with construction drawings and specifications
- Designed taking into account soil conditions, seismic area, number of stories, building loads, and water tables.

2.4 - WALL LAYOUT

Accurate wall layout is critical to ensure a complete and profitable Logix project.
Verify that wall layout is in accordance with plans and specifications.
In addition to straight Standard forms, Logix provides 45° and 90° corner form blocks. However, Logix can be easily cut on-site to fit any corner angle or radius. See "2.7.8 - RADIUS WALLS" on page 26.

Snap chalk lines

2.5 - PRODUCT HANDLING \& PLACEMENT

There are several methods to efficiently handle Logix forms. Unlike most ICF systems, the consistent 2-3/4 inch (70 mm) panel thickness on Logix forms means that handling damage is minimized.

2.6 - JOBSITE EFFICIENCY

An efficient jobsite means a faster and safer installation, and ultimately a higher quality finished project.

- Keep all materials and tools outside of the footing area until the chalk lines have been snapped and the wall layout is complete. Generally, construction is accomplished from within the perimeter of the structure.
- When wall layout is complete, place forms at least 7 feet $(2.134 \mathrm{~m})$ inside the perimeter of the footings or slab to accommodate the wall alignment system.

- Space skids of standard forms around the inside of the entire perimeter.

NOTE: When placing courses of forms, always take forms from the closest skid. This will eliminate the effects of normal manufacturing variations between skids.

- Periodic checking of dimensions ensures accurate wall construction.
- Additional materials that should be located within the perimeter:
- Window and door bucks
- Rebar (straight or pre-bent)
- Alignment system
- Approved scaffold planks
- Tools

2.7 - LOGIX WALL CONSTRUCTION

When a form is cut, it can be identified using bars and webs. For example, a cut form with three bars, two webs, and three bars will be referred to as a " $3-2-3$ ".

By establishing a logical form pattern that takes into account the building dimensions, maximum efficiency will be achieved. It is important that the building dimensions have a tolerance of $+/-1 / 2^{\prime \prime}$ inch (13 mm) or a stacked vertical joint will result. Such joints are acceptable if dimensions necessitate but will require additional form support on both sides of the form.

When building dimensions are based on 4 feet (1.219 m) increments, it is suggested to alternate between left- and right-hand corners within each course.

Alternating corner forms

2.7 - Logix WALL CONSTRUCTION cont'd

2.7.1 - THE FIRST COURSE

STEP 1: Start first course at a corner and align with chalk line.

STEP 3: Secure forms end-to-end to maintain building dimensions using zip ties or Logix Hooks.
z
0
-
\vdash
\cup
\supset
$\underset{c}{ }$
STEP 2: Continue placing forms along the chalk line.

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.7 - Logix WALL CONSTRUCTION cont’d

STEP 4: When forms are 4 ft or less from the second corner, place the second corner form.

STEP 5: Cut a Standard form to fit the space left between the corner and the previous Standard form.

At this point, determine if adjustments are needed to the building dimensions so the cut can be made on a line. If adjustments are needed, alter chalk lines accordingly.

If more than 3 bars are extending beyond any web, additional form support is required on both faces of the form.
STEP 6: Continue around the wall in this manner until the first course is complete and dimensions are verified.
Leave the first course of forms in place across door openings and low windows until forms have been placed and building dimensions have been verified to maintain the interlock pattern above openings.

STEP 7：Place necessary rebar in first course as specified and according to local code．
NOTE：Web ties are designed with＇rebar slots＇to provide secure placement of horizontal rebar，and allows for non－ contact lap splices．See＂2．8．2－HORIZONTAL \＆VERTICAL REINFORCEMENT＂on page 29.

STEP 8：Prior to starting the second course，install additional form support if required．

2．7．2－THE SECOND COURSE

STEP 1：Starting at the original corner，place appropriate corner form．When possible，alternate between left－and right－hand corners between courses．This will create a 16 ＂offset．

NOTE：It is necessary to firmly seat every form to the form below to minimize interlock settling．The interlock system is designed to secure forms betweens courses，which helps minimize form settling and movement during installation and concrete placement．

STEP 2：Continue placing forms around the wall，working in the same direction as the first course． Make sure to secure forms end－to－end，and between courses，with zip ties，Logix Hooks or foam adhesive．

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.7 - Logix WALL CONSTRUCTION cont'd

(1)

STEP 3: All webs should line up vertically, except where building dimensions are other than 8 inch (203 mm) increments. In this case, special cuts may be required to allow vertical alignment of webs. Webs are aligned when markers on the face of the form are vertically aligned.

STEP 4: Place necessary rebar after completion of second course.

NOTE: Web ties are designed with 'rebar slots' to provide secure placement of horizontal rebar, and allows for non-contact lap splices.

STEP 5: Form Lock can also be placed in the second course, if desired. Overlap Form Lock lengths by roughly 8 inch (203 mm). Align the points of the zigzag pattern in the Form Lock directly above the webs.

STEP 6: Confirm that the wall is straight and level. If adjustment is required, shim or trim the bottom of the wall until level is achieved.

STEP 7: Use foam adhesive to fasten the straightened and leveled wall to the footing or slab. Insert the nozzle 1 inch (25 mm) at the base of every other web along the chalk line, and shimmed and trimmed locations, and inject foam between the block and the footing.

When vertical joints are less than 8 inches (203 mm) apart, additional form support is required.
It is important to note that at this point the wall pattern has been established. Course number 1 will be the pattern for all odd numbered courses ($3,5,7$, etc.). Course number 2 will be the pattern for all even numbered courses.

Wall alignment system to be installed at some point between the second and fourth courses, at no more than 7 feet $(2.134 \mathrm{~m})$ intervals. See "2.11 - WALL BRACING \& ALIGNMENT SYSTEM" on page 44.

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.7 - Logix WALL CONSTRUCTION cont'd

2.7.3 - ADDITIONAL COURSES

Installation of additional courses is the generally the same as the second course, described in the previous section.
STEP 1: Fasten every corner end-to-end to adjoining forms using zip ties, Logix Hooks, or adhesive foam.
Install Form Lock, if desired, every fourth of fifth course after the second course.
STEP 2: After completion of each course, place necessary rebar as specified and according to local code.
STEP 3: Secure forms end-to-end in the top course to maintain building dimensions.
STEP 4: Secure the top course to the forms below on both sides to prevent tipping during concrete placement.

STEP 5: If additional stories are planned, the interlock needs to be protected prior to concrete placement.

When vertical joints are less than 8 inches (203 mm) apart additional form support is required.
If you need to stack identical corners in subsequent courses, you will need to provide additional form support where the stacked joints are created.

Vertical stacked joints requires additional form support.

Hold all reinforcement back 2 inches (51 mm) from door and window buck material to ensure proper concrete coverage.

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.7 - Logix WALL CONSTRUCTION cont'd

2.7.4 - CORNER BRICK LEDGE

Brick Ledge forms come only in straight units, so mitered cuts on site must be made to create corners with these blocks. Two methods can be used:

1. Freehand miter cutting.
2. Using a template.

NOTE: On a 6.25 inch (159 mm) Logix Brick Ledge always start a miter cut in the middle of the first web beyond the corner form.

Extending a Brick Ledge block two webs beyond the corner block and making the cut will create a remaining piece that can be used for an inside corner elsewhere in the layout.

STEP 1: With the first Brick Ledge block, make a miter cut on the Brick Ledge panel.

STEP 3: With the second Brick Ledge block, make similar miter and butt-joint cuts.

STEP 2: With the first Brick Ledge block, make a buttjoint cut flush to the form below.

STEP 4: Place both cut Brick Ledge blocks to create the Brick Ledge 90° corner.

2.7 - Logix WALL CONSTRUCTION cont'd

STEP 5: Secure the corner Brick Ledge with tape and foam.

STEP 6: Place rebar, as required, and remove foam from cavity where necessary.

DETAIL A

* $1 \mathrm{kN}=224.8 \mathrm{lb}$

See Section 6 -
Engineering in the LOGIX
Product Manual for
reinforcement details

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.7 - Logix WALL CONSTRUCTION cont'd

2.7.5 - KNOCK-DOWN FORMS

Logix Knock-down forms (Logix KD) are designed to offer the same benefits as the Logix solid forms (Logix PRO). However, Logix KD forms also

- reduce shipping costs and inventory requirements
- accommodates tilt-up wall panel construction
- allows hassle-free assembly of forms around complex rebar patterns (i.e. stirrup or rebar cage pattern in walls)
- allows custom block configurations (i.e. Taper Top-Brick Ledge, etc...)

Knock-down ties (KD connectors) connect to the embedded furring tabs

Logix KD Standard Form - disassembled view.

Logix KD Standard Form - assembled view.

2.7.5.1 - PRODUCT HANDLING

There are several methods to efficiently handle Logix KD forms. The high foam density and consistent 2-3/4 inch (70 mm) panel thickness on Logix KD means that handling damage is minimized.

The forms arrive on-site unassembled. KD Connectors and panels arrive on-site packaged in boxes and bundled in stacks, respectively.

2.7.5.2 - ASSEMBLING AND INSTALLATION

As the forms are assembled on-site they are stacked in place to form the walls. Stacking the blocks, including required tools and methods, are the same when using Logix Pro forms.

Top and bottom KD connectors are required for each furring tab.

Connectors are inserted with rebar slots facing up.

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.7 - Logix WALL CONSTRUCTION cont'd

2.7.5.3 - CORNER FORM SUPPORT

For any type of ICF knock-down system it is good practice to provide additional form support at the corners.
To ensure a safe and proper concrete pour the following corner form support is recommended:

- Using 2.5 inch (64 mm) wood screws to fasten 2×6 vertically to the embedded furring tabs on both sides of the corner.
- For outside corners wrap steel strapping around the corners. For the bottom third of the concrete pour height evenly space two strappings for each course. Then one strap per course for the remaining pour height. Using 1.5 inch (38 mm) wood screws the bands should attach to at least two furring tabs that
- For inside corners apply typical bracing as required.

Example of outside corner form support for KD forms.

Example of inside corner form support for KD forms.

2.7.6 - TEE WALLS

Wall T-junctions can be constructed using Logix T-walls, or by field-cutting Logix Standard forms.
Logix T-walls arrive to the job site assembled or disassembled. When assembled Logix T-walls provide sizes that are commonly used in construction. Each T-wall size comes in two different shapes, a long and short section, so that a running bond pattern is created when the T-wall forms are stacked.

Installation of Logix T-walls is straightforward. As with all Logix forms, the T-walls are stacked in the usual running bond pattern, and follows the same basic installation instructions detailed in "2.7-LOGIX WALL CONSTRUCTION" on page 10 .

Logix T-wall Sizes	Description
4 to 6	$4^{\prime \prime}$ connected to 6.25" Logix
4 to 8	$4^{\prime \prime}$ connected to $8^{\prime \prime}$ Logix
4 to 10	$4^{\prime \prime}$ connected to 10" Logix*
4 to 12	$4^{\prime \prime}$ connected to 12" Logix*
6 to 6	$6.25^{\prime \prime}$ connected to 6.25" Logix
6 to 8	$6.25^{\prime \prime}$ connected to 8" Logix
6 to 10	$6.25^{\prime \prime}$ connected to $10^{\prime \prime}$ Logix*
6 to 12	$6.25^{\prime \prime}$ connected to $12^{\prime \prime}$ Logix*
* Assembled without diagonal ties.	

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.7 - Logix WALL CONSTRUCTION cont'd

2.7.6.1 - FIELD-CUT T-WALLS

When necessary, t-walls can be made field cutting Standard forms, or straight blocks.

When the entire wall has been checked for plumb and square, apply foam adhesive to the butt joints, and install additional form support, as required.

Another option for building a t-wall is to construct the entire continuous wall first. This method requires preplanning to ensure there is adequate reinforcement at every course to allow the t-wall to be attached securely. All other steps above need to be applied.

2.7.7 - GABLE WALLS

The preferred method to construct a gable end is on the floor to be installed as a one-piece unit.

Make sure all necessary roof attachment hardware is available prior to concrete placement, as it must be installed during or immediately after the pour.

NOTE: Pieces of plywood can be screwed into the 1×4 s during placement to help contain the concrete.
Another option for constructing a gable wall is to assemble the gable in place. Set the pitch for the gable by marking the first course appropriately. Subsequent courses should follow this pattern.

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.7 - Logix WALL CONSTRUCTION cont'd

2.7.8 - RADIUS WALLS

There are a number of different methods for creating radius walls with Logix. Below, is a guide that will create radius walls based on 8 inch segments of Logix.

NOTE: This process will result in vertically stacked joints, and additional form support will be required prior to concrete placement.

See "2.21 - RADIUS WALLS" on page 83, for radius wall tables.

STEP 1: Cut forms into 8" sections with web centered in each section.

STEP 3: Cut the 8 " section at the edges along the radius lines. Mark and cut all form sections using this template.

STEP 2: Mark radius lines for an $8^{\prime \prime}$ cut section.

STEP 4: Connect and secure sections with zip-ties, tapes and foam to create the first course. Repeat the steps for each additional course, and connect each with zip ties or Logix hooks.

2.7.9 - LOGIX D-RV

Logix $\mathrm{D}-\mathrm{Rv}^{\top \mathrm{M}}$ are 2 inch thick foam panels made with a drainage layer. It provides a quick and easy alternative to providing drainage with the added benefit of increasing the R-value of a Logix wall assembly.

(The drainage layer may be required, either by code or design, when a direct applied finish, such as stucco, is used on an exterior ICF wall).

Logix D-Rv can be installed into the Logix form blocks either before or while the form blocks are stacked to build the wall. This speeds up the construction process and eliminates the need to apply the drain layer to the exterior face after a Logix wall has been built.

Offsetting the vertical joints of the D-Rv™ panels with the vertical joints of the Logix forms will create a stronger, more rigid wall structure.

For more information contact your local Logix representative or see Technical Bulletin No. 36, Logix D-Rv™ in the Logix Technical Library.

2.8 - REINFORCEMENT

Reinforcing steel (rebar) strengthens concrete walls to help minimize cracking and buckling under load due to backfill, wind, and other loads. Rebar also helps control cracking due to temperature swings and shrinkage.

2.8.1 - BASIC REINFORCEMENT

- Reinforcing steel must meet the requirements of ASTM A615, ASTM A996, or ASTM A706 for low-alloy steel. Minimum of Grade 40 (300 MPa).
- Reinforcing steel in a Logix wall must have minimum $3 / 4$ inch (19 mm) concrete cover.
- Hold the reinforcement back from door and window openings by $2^{\prime \prime}$ (51 mm), or as required by design, or local building codes.
- Refer to Section 6, Engineering for the Logix prescriptive engineering tables.
- It is the responsibility of the installer to verify table rebar specifications with local building codes and engineering specs.

2.8.2 - HORIZONTAL \& VERTICAL REINFORCEMENT

It is the responsibility of the installer to verify table rebar specifications to comply with local building codes and engineering specs.

Refer to Section 6 for Logix prescriptive engineering tables, and Section 5.2.1 for typical reinforcement details.

Rebar slots in the web ties allow for non-contact lap splices of horizontal rebar, the preferred method when creating lap splices.

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.8 - REINFORCEMENT cont'd

2.8.3 - TYPICAL REINFORCEMENT AT OPENINGS

It is the responsibility of the installer to verify table rebar specifications to comply with local building codes and engineering specs.

Refer to Section 6 for lintel reinforcement tables, and lintel details.

2.8.4 - LINTELS

Appropriate lintel rebar should be placed in the proper sequence directly above doors and windows to carry loads over these openings.

Before placing forms across the top of door or window openings, rest the bottom lintel bar(s) on buck material.

NOTE: Form Lock can be installed across the entire length of the lintel span. In some cases it may be required to install top lintel rebar before installing Form Lock, in order to achieve necessary concrete cover.

Refer to Section 6 for lintel reinforcement tables, and lintel details.

LOGIX® ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.9 - WINDOW \& DOOR BUCKS

Bucks provide attachment surfaces for windows and doors while holding back concrete from these openings during concrete placement. Mark the center and edges of openings as you place courses and cut blocks as needed.

Refer to the rough opening (R/O) dimensions for windows and doors. Provide for openings in the wall taking into consideration the thickness of the chosen buck material. See window and door manufacturer info for R/O dimensions.

Cross bracing is required for all window and door bucks approximately 18 inches (457 mm) on center to help withstand the pressures of concrete placement.

Window and door openings within 4 feet (1.220 m) of corners require additional horizontal strapping from corner to across the opening.

Prior to placing window or door buck, confirm that bottom lintel rebar has been installed.
Bucks can be made from EPS foam, lumber or vinyl. Logix Pro Buck, made of dense EPS foam, is recommended for use with Logix ICF.

2.9.1 - LOGIX PRO BUCK

Recommended for use with Logix ICF is the Logix Pro Buck system. Designed for Logix, Pro Buck creates a complete thermal break in window and door openings. And unlike wood and vinyl bucks, Pro Buck is light weight, faster and easier to install, while creating little job site waste. For more information refer to the Logix Pro Buck Installation Guide.

For efficiency, a table long enough to accommodate connecting and cutting Pro Buck sections together is recommended. This can be done by simply using a pair of sawhorses and a section of plywood, or $2 x$ lumber, such as 2×10 or 2×12 pieces.

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.9 - WINDOW AND DOOR BUCKS cont’d

When the walls are built to the height of the opening installation of the Pro Buck can begin. The rough opening is measured between the Pro Bucks. Therefore, to account for the $1.5^{\prime \prime}$ thickness of Pro Buck, the opening in the Logix ICF wall should be cut $3^{\prime \prime}$ wider and 3 " taller than the rough opening.

STEP 1: Assemble Pro Buck for the jambs, and cut the lapped ends to fit the height of the opening minus $1.5^{\prime \prime}$, which is the thickness of the Pro Buck at the header.

STEP 3: Install Pro Buck at the sill. To avoid debris in the wall cavity, cut min. $4^{\prime \prime}$ port holes at $16^{\prime \prime}$ on center before placing in the opening.

Cut a $2 x$ to fit the width of the opening between the two Pro Buck jambs. The $2 x$ should be centered and fastened to the exposed Pro Buck furring strips before setting into place. This will stiffen the Pro Buck, and prevent excessive deflection when placed.

STEP 2: Install Pro Buck at the header. Cut the lapped ends to fit the entire width of the opening. The ends of Pro Buck will sit directly on the Pro Buck jamb pieces.

STEP 4: Continue installing forms above the opening. Use zip ties around the tie-back loop to secure the Logix forms to the Pro Buck at the header.

Once the Pro Buck pieces are placed in the opening add $2 x$ wood bracing, and Pro Buck Brackets, to secure the Pro Bucks during concrete placement. Wood screws are recommended when fastening wood bracing to Logix Pro Buck.

NOTE: Using a membrane flashing is recommended to cover the joints between Pro Bucks and the Logix blocks.

1. Internal furring strips are easy to locate as they are in the same spot as the exposed furring strips that run across the face of Pro Buck.
2. Wind Devil fasteners are available from www.wind-lock.com. Finishes such as stucco, or acrylic textured finishes can be applied directly over Wind Devil fasteners.

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.9 - WINDOW AND DOOR BUCKS cont'd

Non-corrosive wood screws are recommended for the attachment of window or door frames. Inset or flanged windows and doors are fastened to the furring strips molded into the Logix Pro Buck. The furring strips are anchored into the concrete providing proper load transfer from the window/door to the concrete substrate.

To determine the fastener type and spacing for load rated windows and doors, withdrawal and lateral load resistance of specific fasteners are provided below.

Direct Fastening to Furring Strips

	Allowable Withdrawal 1	${\text { Allowable } \text { Lateral }^{1}}^{\text {\#6 wood screw, min 1" long }}$
\#8 wood screw, min 1.25" long	30 lb	72 lb
\#10 wood screw, min 1" long	38 lb	188 lb

1. Withdrawal factor of safety $=5$, allowable lateral load based on the lesser of factor of safety of 3.2 or 75% of proportional limit. Based on independent fastener testing conducted by QAI Laboratories, in accordance with ASTM D1761, and ASTM E2634. and lateral load resistance of specific fasteners are provided below.

Direct Fastening of Logix Wall Plate

	Allowable Withdrawal 1	Allowable Lateral 1
$\# 8-18 \times 1{ }^{\text {" }}$ " long self-tapping screw	102 lb	142 lb
$\# 10-16 \times 1.5^{\prime \prime}$ long self-tapping screw	106 lb	171 lb

1. Withdrawal factor of safety $=5$, lateral resistance factor $=0.5 \& 0.53$ for \#8 and \#10 screws, respectively. Based on independent fastener testing conducted by QAI Laboratories, in accordance with ASTM D1761, and ASTM E2634.

To insert Logix Wall Plate cut a narrow slit on the face of Pro Buck.

Bracing support for opening can support the Wall Plate during concrete placement.

Wall Plate at front face of Pro Buck reinforcement.

The Wall Plate securely anchors into the concrete core. When placed transversely to the opening holes punched in the Wall Plate allow for the placement of perimeter

Pro Buck can also be installed length wise along the opening and temporarily fastened to the furring strips at predrilled holes, if required.

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.9 - WINDOW AND DOOR BUCKS cont'd

2.9.2 - TREATED PLYWOOD BUCK

Following are several methods for building bucks. Regardless of the method chosen, pre-planning is required to optimize chosen finish materials.

STEP 1: Rip 3/4 inch (19 mm) treated plywood to full form width.
STEP 2: Rip treated 2×4 diagonally on table saw at 180° angle.

STEP 3: Assemble buck with appropriate fasteners with $2 x 4 s$ creating a dovetail detail.
STEP 4: Assemble buck sides and top with access holes cut in bottom piece for placement of concrete. Two $2 x 4 s$ can also be used for the bottom to allow concrete placements.

STEP 5: Place pre-assembled buck in opening and fasten in place with foam adhesive. The buck can also be installed in opening as separate pieces.

STEP 6: Install temporary cross bracing to withstand concrete pressure. Attaching screws through the buck and into closest webs can provide additional buck support.

NOTE: Pressure treated wood for window bucks are normally required only if the bottom of the window buck frame is located at or below ground level. Check with local building codes to determine if your area requires pressure treated window bucks.

2.9.3 - SOLID WOOD BUCK

STEP 1: Choose appropriate wood product based on the dimension of the forms:

- 4" (102mm) form: $9.5^{\prime \prime}(241 \mathrm{~mm})$
-6.25" (159mm) form: $11.75^{\prime \prime}$ (298mm)
- 8" (203mm) form: 13.5" (343mm)
- 10" (254 mm) form: 15.5" (394mm)

STEP 2: Cut top piece of buck to fit the width of the opening.
STEP 3: Cut sides of buck, remembering that the top piece rests on the side pieces.
STEP 4: Cut two $2 x 4 s$ for the bottom to allow concrete placement.
STEP 5: Assemble buck and place in opening.
STEP 6: Once the buck is in place, it must be centered and secured. This can be done by attaching $1 \times 4 \mathrm{~s}$ to the edges of the buck, extending the edge of the 1×4 over the foam to hold the buck firmly in place. Alternately, the buck can be secured with foam adhesive and tape.

STEP 7: Solid wood bucks will require additional concrete anchors to create a permanent attachment to the concrete.

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.9 - WINDOW AND DOOR BUCKS cont'd

2.9.4 - RADIUS OPENINGS

Radius windows and doors can be assembled at the site with shortened pieces of Logix Pro Buck or lumber buck material.

STEP 1: Create the template for the radius opening with OSB or plywood that matches door or window rough opening.

STEP 2: Using template, draw outline of radius on wall, allowing for buck material thickness. Cut accordingly.

STEP 3: Cut buck material into approximately 4 inch (102 mm) widths to create radius buck.
STEP 4: Cut side and bottom buck pieces. Leave openings in the bottom piece for concrete placement and consolidation.

[^0]2.9.5 - METAL JAMBS

Metal jambs are typically used in commercial applications. Many metal jamb companies will pre-bend jambs to fit Logix forms. Contact your local Logix representative for more details.

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.10 - ADDITIONAL FORM SUPPORT

The time spent prior to concrete placement pays huge dividends in job efficiency, accuracy, and profitability.

Provide wood strapping on both sides of Logix at window and door openings less than 4 feet from a corner. Run strapping across opening. Fasten to embedded furring tabs, and bracing around openings.

Provide wood strapping on both sides of Logix when vertical joints are directly on top of each other, or offset between joints is less than 8 " between courses.

Wood strapping is required around window and door openings to maintain straightness. In addition, cross bracing with 2×4 supports is required inside window and door bucks to hold bucks in place and prevent sagging. Use foam adhesive on bucks to provide additional buck support.

Foam adhesive should be used to secure all Height Adjusters.

The top course and lintels should be secured with adhesive foam, zip ties, or Logix Horizontal and Vertical Hooks.

The middle of large openings should be vertically braced to prevent tipping.

All outside corners can be reinforced with tape, or wood strapping, and zip ties.

Radius walls should be secured with foam adhesive and flexible strapping material.

NOTE: All forms should be firmly seated to prevent settling.

2.11 - WALL BRACING \& ALIGNMENT SYSTEM

A bracing system provides support for the wall and acts an alignment system to keep the walls straight and plumb during concrete placement. Typically, the wall alignment system is installed on the inner side of the Logix wall, and installed after placing 2 to 4 courses of Logix forms (depending on wind and other conditions).

Recommended minimum spacing and bracing locations:

- no more than 2 feet (0.610 m) from each corner or wall end, and every 7 feet (2.134 m) or less thereafter, in accordance with OSHA/OHSA requirements.
- on either side of every door and window opening.
- along door and window openings that span more than 6 feet (1.829 m)

NOTES: Prior to concrete placement, make certain walls are aligned perfectly plumb, or leaning slightly inward. The wall must not lean out at all.

A string line must be used to achieve straight walls. See Section "2.7.3 - ADDITIONAL COURSES" on page 16.

Before, during and after concrete placement, the diagonal turnbuckle arm is used to adjust wall straightness to stringline.

Proprietary bracing systems are available through ICF dealers or bracing suppliers.
For tall wall bracing and alignment see Section 3.2, Tall Wall Bracing Systems.

2.12 - FLOOR CONNECTIONS

Any type of floor system can be easily integrated with Logix. For any questions or assistance, please contact your local Logix representative.

2.12.1 - LEDGER WITH ANCHOR BOLTS \& JOIST HANGERS

STEP 1: Snap chalk lines and cut openings for bolt locations.

STEP 3: Place concrete.

STEP 2: Install ledger with anchor bolts.

STEP 4: Install joist hangers.

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.12 - FLOOR CONNECTIONS Cont’d

2.12.2 - STEEL ANGLE IRON LEDGER

When floor spans become very long or concrete topping is applied to the floor, a wood ledger may not be adequate to support floor loads. In this case a steel angle iron can be used in place of a wood ledger. The angle iron can support much more weight and also eliminates the need for joist hangers, as the floor system sits right on the angle.

To install an angle iron ledger follow the steps in Section "2.12.1 - LEDGER WITH ANCHOR BOLTS \& JOIST HANGERS" on page 45 , but use pieces of plywood to temporarily hold the bolts in place. After the pour drill and bolt on the angle iron. Local steel fabricators may be able to pre-drill your angle iron.

Another alternative is to pre-fabricate an angle iron with anchor bolts or nelson studs welded directly to the angle. The entire assembly is then cast in place. This application is described below.

STEP 2: Install 2×4 to support angle assembly.

STEP 3: Install strapping to support angle assembly.

STEP 4: Pour concrete and cast the assembly in place.

NOTE: It is code in some areas for the angle assembly to be primed.

STEP 5: After some curing place floor systems on the angle and establish layout. Once layout is complete fasten the floor joist to the angle iron, as specified. You may decide to attach a nailing surface to the bottom leg of the angle iron to nail joists to.

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.12 - FLOOR CONNECTIONS Cont'd

2.12.3 - BRICK LEDGE FOR TOP \& BOTTOM CHORD BEARING SYSTEMS

The Logix Brick Ledge form can create a load bearing surface to support floor systems, including top and bottom chord bearing trusses or joists.

Top chord bearing on Logix Brick Ledge.

STEP 1: Install a course of Logix Brick Ledge, and place required reinforcement.

STEP 3: As concrete is placed, install embedments, as required.

Top chord bearing on Logix Brick Ledge.

STEP 2: When installing a course above the Logix Brick Ledge add additional form support to prevent tilting or separating.

NOTE: If the Logix block in the course above the Brick Ledge is of a smaller width than the Brick Ledge, additional form support will be required.

2.12.4 - LEDGER WITH SIMPSON BRACKET \& JOIST HANGERS

The ICFVL \& ICFVL-W ledger connector system from Simpson Strong-Tie is designed for mounting steel or wood ledgers on ICF walls.

STEP 1: Snap a chalk line to mark the bottom of the ledger and insert ICFVL brackets, as specified.

STEP 2: Secure the ICFVL brackets before placing concrete. Fastening strapping across the brackets or installing the ledgers prior to concrete placement will help ensure full concrete embedment of the ICFVL brackets.

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.12 - FLOOR CONNECTIONS Cont’d

STEP 3: Place and consolidate concrete. Once set, slip the ICFVL-W or ICFVL-CW underneath the wood ledger and drive eight ICF-D3.25 screws through the ledger and into the ICFVL bracket. ICF-D3.25 screws are supplied by Simpson Strong-Tie.

For steel ledgers use four \#14 x 3/4" screws to attach the ledger to the ICFVL brackets. These screws are not supplied by Simpson Strong-Tie.

STEP 4: Connect the floor joists to the ledgers, as required.

NOTE: Industry studies show that hardened fasteners can experience performance problems in wet environments. Accordingly, use this product in dry environments only. In addition, due to its corrosive nature, treated lumber should not be used with this product.

Use extra caution when installing the hangers on both sides of a wall. Consult your local Simpson Strongtie rep or contact Simpson Strongtie at (800) 999-5099 prior to installation.

Complete technical data is available at www. strongtie.com
Simpson Strong-Tie Ledger Connector Loads \& Spacings

		Simpson Strong-Tie Ledger Connector Loads \& Spacings											
		$\begin{gathered} 4 " \\ \text { LOGIXICF } \end{gathered}$	$\begin{aligned} & 6 ", 8^{\prime \prime} \& 10 " \\ & \text { LOGIXICF } \end{aligned}$	$\begin{gathered} 4 " \\ \text { LOGIX ICF } \\ \hline \end{gathered}$	$\begin{aligned} & 6^{\prime \prime}, 8 " \& 10 " \\ & \text { LOGIX ICF } \end{aligned}$	Spacing to Replace Anchor Bolts ${ }^{\text {3,4,6 }}$							
dger Type	Model No.	Allowable Vertical Resistance ${ }^{2}$	Allowable Vertical Resistance ${ }^{2}$	Factored Vertical Resistance	Factored Vertical Resistance	1/2" Dia. Bolts at				5/8" Dia. Bolts at			
dger Type		$\begin{aligned} & \text { lbs } \\ & \text { (kN) } \end{aligned}$	$\begin{aligned} & \hline \text { lbs } \\ & \text { (kN) } \end{aligned}$	$\begin{aligned} & \text { Ibs } \\ & \text { (kN) } \end{aligned}$	$\begin{aligned} & \hline \mathrm{lbs} \\ & \text { (kN) } \end{aligned}$	$\begin{gathered} 12 " \\ (305 \mathrm{~mm}) \end{gathered}$	24" (610mm)	$\begin{gathered} 36 " \\ (914 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \hline 48 " \\ (1220 \mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 12 " \\ (305 \mathrm{~mm}) \end{gathered}$	24" (610 mm)	$\begin{gathered} 36^{\prime \prime} \\ (914 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \hline 48^{\prime \prime} \\ (1220 \mathrm{~mm}) \end{gathered}$
2xD.Fir-L/SPF	ICFVL w/ ICFVL-W	$\begin{aligned} & 1375 \\ & (6.12) \end{aligned}$	$\begin{gathered} 1894 \\ (8.42) \end{gathered}$	$\begin{aligned} & 1890 \\ & (8.41) \end{aligned}$	$\begin{gathered} \hline 2630 \\ (11.70) \end{gathered}$	4^{\prime} $(1220 \mathrm{~mm})$	4^{\prime} $(1220 \mathrm{~mm})$	4^{\prime} $(1220 \mathrm{~mm})$	4^{\prime} $(1220 \mathrm{~mm})$	$3^{\prime}-9^{\prime \prime}$ $(1143 \mathrm{~mm})$	4^{\prime} $(1220 \mathrm{~mm})$	4^{\prime} $(1220 \mathrm{~mm})$	4^{\prime} $(1220 \mathrm{~mm})$
$13 / 4$ " LVL	ICFVL w/ ICFVL-CW	$\begin{aligned} & 1375 \\ & (6.12) \end{aligned}$	$\begin{gathered} 1894 \\ (8.42) \end{gathered}$	$\begin{aligned} & 1890 \\ & (8.41) \end{aligned}$	$\begin{gathered} 2630 \\ (11.70) \end{gathered}$	4^{\prime} $(1220 \mathrm{~mm})$	4^{\prime} $(1220 \mathrm{~mm})$	4^{\prime} $(1220 \mathrm{~mm})$	4^{\prime} $(1220 \mathrm{~mm})$	$\begin{gathered} 3^{\prime}-6^{\prime \prime} \\ (1067 \mathrm{~mm}) \end{gathered}$	4^{\prime} $(1220 \mathrm{~mm})$	4^{\prime} $(1220 \mathrm{~mm})$	4^{\prime} $(1220 \mathrm{~mm})$
(0.054") 16ga	ICFVL	$\begin{gathered} 1770 \\ (7.87) \end{gathered}$	$\begin{gathered} 1894 \\ (8.42) \end{gathered}$	$\begin{gathered} 2435 \\ (10.83) \end{gathered}$	$\begin{gathered} 2630 \\ (11.70) \end{gathered}$	$\begin{gathered} 1^{1}-3^{\prime \prime} \\ (381 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 2^{\prime}-3^{\prime \prime} \\ (686 \mathrm{~mm}) \end{gathered}$	--	--	$\begin{gathered} 1^{\prime} \\ (305 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { '2 } \\ (610 \mathrm{~mm}) \end{gathered}$	--	--
(0.068") 14ga	ICFVL	$\begin{gathered} 1770 \\ (7.87) \end{gathered}$	$\begin{gathered} 1894 \\ (8.42) \end{gathered}$	$\begin{gathered} 2435 \\ (10.83) \end{gathered}$	$\begin{gathered} 2630 \\ (11.70) \end{gathered}$	1^{\prime} $(305 \mathrm{~mm})$	2^{\prime} $(610 \mathrm{~mm})$		--	$\begin{gathered} 9^{\prime \prime} \\ (229 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 1^{\prime}-6 " \\ (457 \mathrm{~mm}) \end{gathered}$	--	--

		$\begin{gathered} 4 " \\ \text { LOGIX ICF } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6^{\prime \prime}, 8^{\prime \prime} \& 10^{\prime \prime} \\ & \text { LOGIX ICF } \\ & \hline \end{aligned}$	$\begin{gathered} 4^{\prime \prime} \\ \text { LOGIX ICF } \end{gathered}$	$\begin{aligned} & \hline 6^{\prime \prime}, 8^{\prime \prime} \& 10^{\prime \prime} \\ & \text { LOGIX ICF } \end{aligned}$	Spacing to Replace Anchor Bolts ${ }^{3,4,6}$							
	Model No	Allowable Vertical Resistance ${ }^{2}$	Allowable Vertical Resistance ${ }^{2}$	Factored Vertical Resistance	Factored Vertical Resistance	2-5/8" Dia. Bolts at				3/4" Dia. Bolts at			
		lbs (kN)	lbs (kN)	lbs (kN)	lbs (kN)	$\begin{gathered} 12 " \\ (305 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 24 " \\ (610 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 36 " \\ (914 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \hline 48^{\prime \prime} \\ (1220 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 12 " \\ (305 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 24 " \\ (610 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 36^{\prime \prime} \\ (914 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 48^{\prime \prime} \\ (1220 \mathrm{~mm}) \end{gathered}$
2xD.Fir-L/SPF	ICFVL w/ ICFVL-W	$\begin{aligned} & 1375 \\ & (6.12) \end{aligned}$	$\begin{aligned} & 1894 \\ & (8.42) \end{aligned}$	$\begin{aligned} & 1890 \\ & (8.41) \end{aligned}$	$\begin{gathered} \hline 2630 \\ (11.70) \end{gathered}$	1' $^{\prime}-9^{\prime \prime}$ $(533 \mathrm{~mm})$	$\begin{gathered} 3^{\prime}-99^{\prime \prime} \\ (1143 \mathrm{~mm}) \end{gathered}$	4^{\prime} $(1220 \mathrm{~mm})$	4^{\prime} $(1220 \mathrm{~mm})$	$3^{\prime}-6^{\prime \prime}$ $(1067 \mathrm{~mm})$	4^{\prime} $(1220 \mathrm{~mm})$	4^{\prime} $(1220 \mathrm{~mm})$	4^{\prime} $(1220 \mathrm{~mm})$
$13 / 4$ " LVL	ICFVL w/ ICFVL-CW	$\begin{aligned} & 1375 \\ & (6.12) \end{aligned}$	$\begin{gathered} 1894 \\ (8.42) \end{gathered}$	$\begin{aligned} & 1890 \\ & (8.41) \end{aligned}$	$\begin{gathered} 2630 \\ (11.70) \end{gathered}$	$\begin{gathered} 1^{\prime}-9^{\prime \prime} \\ (533 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 3^{\prime}-6^{\prime \prime} \\ (1067 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 4^{\prime} \\ (1220 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 4^{\prime} \\ (1220 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 2^{\prime}-9^{\prime \prime} \\ (838 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 4^{\prime} \\ (1220 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 4^{\prime} \\ (1220 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 4^{\prime} \\ (1220 \mathrm{~mm}) \end{gathered}$
(0.054") 16ga	ICFVL	$\begin{gathered} 1770 \\ (7.87) \end{gathered}$	$\begin{gathered} 1894 \\ (8.42) \end{gathered}$	$\begin{gathered} 2435 \\ (10.83) \end{gathered}$	$\begin{gathered} 2630 \\ (11.70) \end{gathered}$			--	--			--	--
(0.068") 14ga	ICFVL	$\begin{gathered} 1770 \\ (7.87) \end{gathered}$	$\begin{gathered} 1894 \\ (8.42) \end{gathered}$	$\begin{gathered} 2435 \\ (10.83) \end{gathered}$	$\begin{gathered} 2630 \\ (11.70) \end{gathered}$		--	--			--		

Allowable lateral load $=1905 \mathrm{Ibs}(8.47 \mathrm{kN})$ (Applicable to all form sizes).
$1 \mathrm{kN}=224.8 \mathrm{lbs}=102 \mathrm{Kg}$

1. Minimum steel ledger specification is $F y=33 \mathrm{ksi}(230 \mathrm{MPa})$ and $\mathrm{Fu}=45 \mathrm{ksi}(310 \mathrm{MPa})$ in accordance with CSA S136-94 2. No load duration increase is allowed.
2. Spacing is based on vertical load only. 5. Minimum concrete compressive strength, f'c, is $2500 \mathrm{psi}(17.25 \mathrm{MPa})$.
3. The designer may specify different spacing based on the load requirements.
4. For more information contact Simpson Strongtie at www.simpsonstrongtie.co
Note: Industry studies show that hardened fasteners can experience performance problems in wet environments. Accordingly, use this product in dry environments only.
In addition, due to its corrosive nature, treated lumber should not be used with Simpson Strongties.

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.12 - FLOOR CONNECTIONS Cont'd

2.12.5 - TRANSITION LEDGE

A transition ledge typically occurs at the floor level where a wider Logix wall transitions to a narrower Logix wall above the floor line, and usually up to the roof line.

The ledge created when transitioning from a wider to a narrower wall can provide a suitable bearing length for many types of floor systems. The bearing length will vary depending on the thickness and type of Logix forms used. For a complete list of bearing lengths see Section 5.4.1, Bearing Lengths.

2.12.5.2 - TRANSITION LEDGE WITH CORNER BLOCKS

Transitioning from a wider block to a narrower block is commonly used in cases where a thinner wall becomes more economical (i.e., below grade wall to above grade wall), or to create a ledge that can support a floor or roof system, or finishes such as brick veneer.

When transitioning at corner locations using corner blocks, you might find that the interlocking knobs on the top side of the wider bottom block (bottom course) do not interlock or align with the underside of the top narrower block (top course). As a result, the top course will not sit or snap into its proper position.

This typically occurs in transitions at corner locations, and is easily resolved by following a few simple steps outlined below.

Proper alignment of top course to bottom course. Interlock aligns with underside of top course.

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.12 - FLOOR CONNECTIONS Cont’d

STEP 1: Cut the interlocks off the wider corner blocks (it may be necessary to cut the interlocks off the rest of the blocks on the bottom course to ensure the top course can be placed flush on top of the previous course).
As an alternative, Taper Top blocks for the bottom course can be used. The Taper Tops provide more flexibility since they can be adjusted to ensure the interlocks align with the top course.

STEP 3: Install the top course beginning with the corner block and continuing around the building perimeter.

2.12.6 - TAPER TOP WITH SILL PLATE

The Taper Top form creates a greater bearing surface at the top of Logix walls.

STEP 1: Taper Top forms need to be foamed down or otherwise secured to the course below.

STEP 2: Trowel concrete flush with top of forms, or inset as required. Be sure to check for level.

z

STEP 3: Insert embedments as required.

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.12 - FLOOR CONNECTIONS Cont'd

2.12.7 - CONCRETE FLOOR SYSTEMS

Building with Logix will allow you to explore many concrete floor system options. Our walls are stronger and can support added weight that wood or steel frame buildings may not. Concrete floor systems are very popular in multi-residential buildings where the transmission of sound and fire are a concern. They are also growing in popularity in single-family residential applications.

2.12.7.1 - PRECAST CONCRETE FLOORS

Pre-cast floor systems are poured at the factory and shipped to site then craned in place. They are usually tensioned with steel cables cast in the concrete to provide maximum strength. Pre-cast floor are fast and can have very long clear spans.

Typically the Logix wall is constructed to the desired height and the pre-cast planks sit directly on the cured concrete. The planks, typically 4 feet (1.220 m) wide, are craned in place and the groves between planks are

2.12.7.2 - COMPOSITE FLOOR SYSTEMS

Composite floors are a combination of steel and concrete that is bonded together to create a very strong floor allowing for longer spans and wider joist spacings.

There are a number of brands designed for ICFs including Hambro, iSpanEcospan and Total Joist. Consult your floor manufacturer and your local design engineer for more information.

2.13 - ROOF CONNECTIONS

Roof connections can be attached to the Logix wall in a variety of ways. Several factors can affect which method to use such as area of the country and wind conditions. There are a number of tie-down options made by Simpson Strong-Tie, including brands designed for ICFs, such as Burmon tie-down systems.

INSET SILL PLATE
This method of sill plate attachment is the most energy efficient. The Logix foam on each side provides an excellent thermal barrier.

TIE-DOWN TO CONCRETE
This method anchors the roof truss to the concrete.

TOP MOUNTED SILL PLATE
This method is typically used when additional wall height is required.

TIE-DOWN TO SILL PLATE
This method anchors the roof truss to the sill plate. (Burmon Anchor Tie-down)

2.14 - SERVICE PENETRATIONS

Identify and size all service and utility penetrations. Install all appropriate and properly sized sleeves where required, remembering that lightweight sleeves can be crushed during concrete placement.

List of possible service penetrations

- Dryer vent
- Water heater vent
- Water
- Sewer
- Electrical main service
- Gas line
- A/C line
- Furnace vent
- Air Exchange/HRV
- Central vacuum
- Ducting
- Bathroom vent
- Kitchen appliance venting
- Fireplace rough opening and vent
- Pet door

Cut appropriate sized holes for penetrations.

Install all required services through the ICF prior to concrete placement, and secure with spray foam.

2.15 - CONCRETE PLACEMENT

2.15.1 - PRE-PLACEMENT CHECKLIST

DATE:
FOREMAN:
JOB:
Prior to placing concrete in Logix insulated concrete forms, be certain to mark off each item on the checklist provided in this section.
__ 1. String line in place around the top of entire perimeter?
___ 2. Walls straight and plumb (not leaning out)?
_ 3. Top course foamed or tied down with zip ties or Logix Hooks end to end to maintain dimensions?
L
山
Σ
\qquad 11. All buck concrete anchors installed?
___ 12. All horizontal and vertical rebar in place?
13. All lintel reinforcing in place?
14. All penetrations installed?
15. All beam pockets in place?
16. All floor embedments installed?
_17. Are anchor bolts and hold-downs on site?
18. Has cavity of wall been checked, and foreign material removed?
19. Plywood, screw gun, and saw on site?
20. Interlock protected by tape, or other covering?
21. Proper concrete mix and slump ordered?
22. Concrete vibrator on site?
23. Pump equipped with reducer or 2 1/2" trimmer hose available?

2.15.2 - MIX DESIGN

Minimum compressive concrete strength is typically $3,000 \mathrm{psi}(20 \mathrm{MPa})$ at 28 days. However, this will depend on the structure and loading conditions. For seismic areas mix design should be confirmed with local codes or by an engineer.

The following maximum aggregate sizes are recommended for use in Logix walls:

	Form Cavity Size, in. (mm)				
	$4(102)$	$6.25(159)$	$8(203)$	$10(254)$	$12 *(305)$
Max. Aggregate Size, in. (mm)	$3 / 8(9.5)$	$3 / 8(9.5)$ to $1 / 2(13)$	$3 / 4(19)$	$3 / 4(19)$	$3 / 4(19)$

Always consult your local ready mix companies for appropriate concrete mix design.

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.15 - CONCRETE PLACEMENT Cont'd

2.15.3 - BEST PRACTICES

The most important stage of a successful Logix project is the concrete placement. Extra workers at this stage are important - be certain to have enough on hand during the pour to safely handle placement, consolidation, alignment, embedments, and cleanup.

An experience crew ensures the concrete is properly placed and consolidated. The following are recommended practices and considerations when placing concrete.

- Concrete slump should be 5 inch $(127 \mathrm{~mm})$ to 6 inches $(152 \mathrm{~mm})$ for best results.
- Use an internal vibrator with a head size of $3 / 4$ inch (19 mm) to 1 inch $(25 \mathrm{~mm})$ and maximum 1 hp motor. Do not use a vibrator with a head larger than 1 inch (25 mm).
- Appropriate internal vibration assures the strongest walls possible and is especially important for below grade application where the greatest loads occur.
- The rule of thumb for internal vibration is fast in and slow out, always moving, with a withdrawal rate of approximately 3 inch (76 mm) per second.
Other methods of placement include conveyor truck, crane and bucket, and directly off the ready mix truck.
- Lift height is determined by many factors, such as air temperature, concrete temperature, slump, etc. In general, lift heights should not exceed $4 \mathrm{ft}(1.220 \mathrm{~m}$) per hour.
- When placing concrete below freezing or at temperatures above $100^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right)$, it's important to protect all exposed concrete with insulation.
- When placing concrete in 4 inch (102 mm) forms, it is recommended that the pump truck be fitted with a 2.5 inch (76 mm) flexible hose end.

2.15.4 - PLACING CONCRETE

STEP 1: Complete the pre-placement checklist.

STEP 2: Begin concrete placement under openings, filling those areas and consolidating.

STEP 3: Beginning no closer than 3 feet (0.914 m) from a corner, start filling the wall from the top, allowing the concrete to flow gently toward the corner. Then fill in that corner from the opposite side using the same technique.

STEP 4: Continue placing concrete around entire wall in appropriately sized lifts, using the same technique at each corner to minimize fluid pressure.

STEP 5: As the concrete is being placed, consolidation is taking place to remove air and voids to ensure structural integrity.

STEP 6: Check and adjust wall alignment using string lines and turnbuckles.

STEP 7: Return to starting location and begin the next lift. Follow all the techniques established above.

030321 | 2-63

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.15 - CONCRETE PLACEMENT Cont'd

2.15.5 - POST-PLACEMENT CHECKLIST

DATE:
FOREMAN:
JOB:
After placing concrete in Logix insulated concrete forms, be certain to mark off each item on the checklist provided in this section.
\qquad 1. Has consolidation been completed?
\qquad 2. Are walls straightened to string line?
\qquad 3. In extreme temperatures, has exposed concrete been protected?
\qquad 4. Have all anchors and embeds been installed?
\qquad 5. Has spilled concrete been disposed of?
\qquad 6. Has final check for straight and plumb been done?

2.16 - ELECTRICAL INSTALLATIONS

Electrical and plumbing installation are typically performed after concrete placement.
The exception to this rule is the placement of conduit that penetrates the wall, which must be performed before concrete placement.

Installing electrical wiring and boxes is accomplished by creating channels in the EPS foam. When installed in Logix walls directly against the concrete, electrical boxes will extend $1 / 2$ inch (13 mm) beyond the foam to match the thickness of $1 / 2$ inch (13 mm) sheetrock.

Various tools can be used to create the channels and spaces for wiring and boxes:

- Electrical chainsaw with an adjustable roller depth stop
- Hot knife
- Circular saw with a masonry blade

Make the wiring channels narrow so there will be a friction fit with the wiring. The wiring needs to remain embedded well into the foam to meet local electrical codes. Foam adhesive can be spot-applied into the channel to help hold the wiring in place.

2.17 - PLUMBING INSTALLATIONS

In most cases, buildings are designed so plumbing pipes are not carried through the Logix walls, except for utility entry and exit points.

However, in some cases it may be required to embed pipe in the EPS. For example, a kitchen vent tube may need to be installed vertically in the EPS foam. Pipes embedded in the foam cannot exceed 1-1/2 inch (38 mm) in diameter. Fittings embedded in the foam cannot exceed 2-1/2 inch (64 mm) diameter.

An external faucet will require the installation of a hose sleeve through the wall prior to concrete placement. This will permit replacement of the faucet or pipe should it ever be necessary.

If connecting to existing sewer lines, establish the location of the required opening and ensure clearances, since this is difficult to change.

2.18 - INTERIOR \& EXTERIOR FINISHES

2.18.1 - VAPOR \& AIR BARRIERS

The Logix wall assembly has no need for an additional vapor barrier, the solid concrete core covered with the low permeance EPS foam insulation on the inside wall face keeps water vapor from penetrating the wall.

The fact that the inner face of EPS foam maintains a similar temperature as the inside air of the building and that a Logix wall has no cavity means that no condensation can occur in a Logix wall assembly.

The Logix wall assembly has no need for an air barrier (building wrap) layer as the solid concrete core and low permeance EPS foam insulation on the outside wall face keeps air and moisture from penetrating the wall.

Typical Logix wall assembly - no additional vapor barrier, house wrap and air barrier required.

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.18 - INTERIOR \& EXTERIOR FINISHES cont'd

2.18.2 - INTERIOR DRYWALL

Drywall should be installed in the same manner on a Logix wall as on a stud wall, with the following time-saving exceptions:

- All furring tabs (studs) are on 8 inch (203 mm) centers from floor to ceiling for easy attachment of any type of interior wall finish.
- The butt joints of the sheetrock do not need to fall on webs (studs) as the foam provides solid backing wherever the joints fall. However, the edge of sheetrock panels should not exceed more than 4" from webs.
- A foam-compatible adhesive can be used to effectively fasten the sheetrock to the Logix wall along with screws. Always make sure to verify the local code for types and spacing for sheetrock fasteners. Typically, adhesive alone is not allowed as a fastener of sheetrock, but again check with local building codes.

Many local building codes require the application of $1 / 2$ inch $(13 \mathrm{~mm})$ drywall or other suitable thermal barrier in any living space even though the EPS foam has a fire retardant component. Always verify local building code requirements.

Non-habitable spaces such as crawl spaces, attics, and other types of hidden areas typically do not require a thermal barrier (drywall).

Embedded furring tabs are fixed at each corner of the Logix 90° corner forms for solid sheetrock fastening at all corners.

2.18.3 - EXTERIOR SIDING

Siding material of some kind must be installed over the EPS foam to protect it from the UV rays of the sun. Foam left exposed to the sun will slowly develop a dusty surface.

NOTE: When using Logix Platinum Series care should be taken to protect exposed foam surfaces from reflected sunlight and prolonged solar exposure until wall cladding or finish material is applied. Shade exposed foam areas, or remove sources of reflective surfaces, where heat build up onto exposed foam might occur. For more information refer to BASF Technical Leaflet N-4 Neopor, "Recommendations for packaging, transporting, storing and installing building insulation products made from Neopor EPS foam." (The BASF Technical Leaflet is attached to every bundle of Logix Platinum forms delivered to a job site).

Metal and vinyl siding can be installed directly over the top of the EPS.
Although air guns can be used, Logix recommends the use of screw guns when attaching exterior siding. Always follow manufacturer's recommendations and local codes to determine the size and spacing of fasteners for all siding products.

Any type of siding that is used on a typical wood-framed building can be used on a Logix building.
The siding channel stock around doors and windows can be fastened to whatever type of buck material was chosen, in a similar fashion as wood framed building.

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.18 - INTERIOR \& EXTERIOR FINISHES cont'd

2.18.4 - STEEL PANEL SIDING

Steel panel siding can be applied vertically to a Logix wall when the style of the panel matches the Logix web spacing at 8 inch (203 mm) on center increments for fastening purposes.

When a panel siding is chosen that doesn't fit with 8 inch (203 mm) increment for fastening, two different methods are available:

Typical Logix wall assembly - Metal Panel Siding with strapping
METHOD 1: A $1 / 2$ inch $(13 \mathrm{~mm})$ or $3 / 4$ inch (19 mm) strip of wood can be attached horizontally to the webs in the wall to provide the manufacturer's specified fastener spacing.

Typical Logix wall assembly - Metal Panel Siding placed horizontally. METHOD 2: The panels can be installed horizontally, by fastening directly into the webs.

NOTE: Although air guns can be used, Logix recommends the use of screw guns when attaching exterior siding. Always follow manufacturer's recommendations and local codes to determine the size and spacing of fasteners for all siding products.

2.18.5 - WOOD SIDING

Any wood siding can be attached to the Logix wall in the same manner as to a traditional framed building. The spacing of the web studs on 8 inch (203 mm) centers allows for industry standard spacing of fasteners. Typically, screws are used for attaching wood siding or even half-log siding to the Logix wall.

Although air guns can be used, Logix recommends a screw gun with screws in clips (Quik Drive). This is usually the fastest method for applying wood siding. Always follow manufacturer's recommendations and local codes to determine the size and spacing of fasteners for all siding products.

A good practice for installing wood siding on a wall, is to apply the siding over vertical 1 inch $\mathbf{x} 2$ inch ($25 \mathrm{~mm} \times 51$ mm) wood nailing strips with a screen at the bottom. The screen keeps insects out while the space allows air to circulate behind the siding. The air circulation helps equalize the moisture content in the wood siding, which makes for much more dimensionally stable siding and longer lasting application.

Typical Logix wall assembly - Wood Siding.

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.18 －INTERIOR \＆EXTERIOR FINISHES cont＇d

2．18．6－EIFS

There are now acrylic－based stucco products available that are more flexible and easier to work with than traditional cement－based stucco．Collectively these products are known as EIFS（Exterior Insulation Finish Systems）and almost always require an EPS substrate．

Because Logix blocks are made with EPS，they are a natural fit for EIFS finishes．In addition，the webs in Logix blocks are embedded $1 / 2$ inch（ 13 mm ）deep in the EPS foam to comply with EIFS manufacturer requirements．

It is important to follow the EIFS manufacturer＇s application procedures．

Typical Logix wall assembly－EIFS example．Consult EIFS manufacturer for recommended application procedures．．

2.18.8 - CEMENT COMPOSITE SIDING

Recently the new cement fiber siding products have gained popularity. This type of siding can usually be fastened directly to the Logix webs.

Although air guns can be used, Logix recommends a screw gun to fasten flat-headed exterior screws at 16 inch (406 mm) centers. The screws pull the siding in tight and hold the siding securely in place.

Some manufacturers may require the siding to be strapped out to allow air space behind. Vertical or shake patterns will require strapping for fastening. See illustrations in Section 2.18 .4 and 2.18 .5 for strapping examples.

Always follow manufacturer's recommendations and local codes to determine the size and spacing of fasteners for all siding products.

Check with your siding manufacturer for specific requirements.

Furring tabs are embedded 1/2" from surface of Logix foam panels and are anchored into the concrete.

Furring tabs are spaced 8 " on center horizontally — and run nearly the entire height of Logix ICF blocks.

Typical Logix wall assembly - Cement fibre siding installed horizontally.

2.18 - INTERIOR \& EXTERIOR FINISHES cont'd

2.18.9 - BRICK VENEER

The Logix Brick Ledge form units are used to support a brick veneer as the exterior finish material. The Brick Ledge forms are simply placed at a level where the brick is desired to begin. The design of the form creates a reinforced concrete ledge.

With standard reinforcing, the Brick Ledge can bear up to $1300 \mathrm{lb} / \mathrm{ft}(19 \mathrm{kN} / \mathrm{m})$ of wall.

2.18.10 - BELOW GRADE WATERPROOFING, DAMPPROOFING \& PARGING

There are many methods available to protect the "below grade" and the "just above grade" areas of the exterior of your building.

Dampproofing is used on concrete or masonry surfaces to repel water in above grade walls. The 2.75 inch (70 mm) foam panels of the Logix insulated concrete forms act as dampproofing, therefore, no additional dampproofing treatment is required.

NOTE: Although dampproofing above grade walls is not typically required, check with local building codes for dampproofing requirements.

2.18.10.1 - BELOW GRADE WATERPROOFING

Logix recommends a rubberized "peel and stick" waterproofing membrane. The membrane is applied vertically to the wall from grade level down to and overlapping the top of the footing. It is recommended to use protection board, such as $1 / 2$ inch rigid foam boards, or drainage boards, to prevent damage to the waterproofing membrane during backfilling.

Proper free-draining backfill material is recommended for below-grade walls.
NOTE: Membrane should be installed within one week prior to backfill being placed. Sunlight and high temperatures may cause the membrane to begin to "sag" which may cause wrinkles in the material. This may result in tears or punctures during the placement of the backfill material. Should you choose to use one of the many other types of waterproofing available be sure to follow the manufacturer's recommended installation procedures.

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.18 - INTERIOR \& EXTERIOR FINISHES cont'd

2.18.10.1 - BELOW GRADE WATERPROOFING

STEP 1: Prep the wall and footing area to be covered by removing all dirt and debris. If the ICF foam panels have been subjected to prolonged UV exposure a chalky layer of dust will develop on its surface. Be sure to remove the dust layer by sweeping the surface with a broom.

STEP 2: Snap chalk lines for the "grade" line.
STEP 3: Measure the height from grade line to footing. Add enough length to cover the top of the footing and cut pieces of membrane to length.

STEP 4: Apply the membrane at corners first. Hang the membrane vertically, and starting at the top pull back the first $8^{\prime \prime}$ to $10^{\prime \prime}$ of the release paper and press. Continue pulling back the release paper and pressing the membrane to the wall. Make sure to wrap the corners with the membrane.

STEP 5: Starting at a corner continue applying cut pieces of membrane around the wall, maintaining 2 inch overlap by using the printed marks on the membrane as a guide.

NOTE: Extreme temperatures, both cold and hot, may cause the installer to consider other types of waterproofing. Be sure to follow the manufacturer's installation process.

030321
2-76

2.18.10.2 - ABOVE GRADE PARGING

The area that is above grade line and below the exterior siding material must be parged to protect the EPS from damage.

Parging is a coating material that is applied to give a finished appearance to the small area of wall that is above grade level but below where the siding materials will begin. Logix Prepcoat is the preferred option for this area.

STEP 1: Prep the wall area to be covered by removing any dirt or debris. The wall may need to be "scuffed" to reveal fresh EPS beads.

STEP 2: Mix Prepcoat dry material with water to a pasty consistency.
STEP 3: Using a trowel apply a thin, $1 / 16$ " $-1 / 8$ " ($2 \mathrm{~mm}-3 \mathrm{~mm}$) "skim coat" of Prepcoat.
STEP 4: Pre-cut pieces of Logix fiber mesh $1^{\prime \prime}-2^{\prime \prime}(25 \mathrm{~mm}-51 \mathrm{~mm})$ wider than the area to be parged. This will allow for an over-lap over the waterproofing membrane to create a "drip ledge".

STEP 5: Embed the mesh in the skim coat firmly.
STEP 6: Once the area is dry to the touch apply a second coat of Prepcoat. This coat can be painted or stained if desired.

2.19 - ATTACHING FIXTURES

For attaching fixtures Logix provides furring tabs spaced every 8 inches, which provides more fastening points than stud walls.

Different methods are used to attach fixtures depending on whether the fixture is light or heavy in weight.

2.19.1 - LIGHT WEIGHT FIXTURES

Fixtures that are light in weight, such as small picture frames or mirrors, can be attached to the wall without having to fasten into the furring tabs by using typical hanging pins, finishing nails or plugs.

Fixtures such as curtain rods, large picture frames or mirrors, bathroom accessories, etc., require a more secure attachment to the wall.

The Grappler, a product made specifically for ICFs, provides a stronger attachment for fixtures that are light in weight but require a more secure hold. The Grappler is also useful in areas where a stronger fastening point is required in an area where furring tabs may be absent. The Grappler is a $4^{\prime \prime} \times 8^{\prime \prime}$ steel meshed plate that is pressed into the surface of the Logix form panels before drywall is placed. Once the drywall is installed the Grappler is sandwiched between the ICF and drywall creating a much stronger and secure attachment area.

2.19.2 - HEAVY WEIGHT FIXTURES

Additional backing is recommended to support heavier wall fixtures, such as kitchen cabinetry, wall mounted fixtures, grab bars, hand rails, etc.

Different attachment methods can be employed depending on the type of attachment.

2.19.2.1 - CABINETS

METHOD 1: Plywood board can be attached to the Logix wall behind the heavier cabinets in place of gypsum board, providing a thermal barrier comparable to gypsum and a strong attachment surface for heavier items and fixtures. Be certain to attach the plywood board to the Logix webs with a sufficient number of screws to hold heavy items in place for when loads are applied.

METHOD 2: Create horizontal channels behind the cabinets equal in width to a 2×4 and install 2×4 backing directly to the concrete surface using sufficiently long concrete screws and a rotohammer. Attach the cabinets to the $2 \times 4 \mathrm{~s}$.

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.19 - ATTACHING FIXTURES Cont’d

2.19.2.2 - GRAB BARS

METHOD 1: Before placing drywall, place the Grapplers (see Section "2.19.1 - LIGHT WEIGHT FIXTURES" on page 78) onto Logix at grab bar fastening points. Install the drywall and fasten the grab bar to the Grapplers.

METHOD 2: Use Tapcon screws to anchor the grab bar directly to the concreted.

METHOD 3: For a stronger hold remove the foam and replace with wood blocking behind the grab bar mounting bracket. The wood blocking should be mechanically fastened to the concrete.

2.19.2.3 - TELEVISIONS

Furring tabs at $\mathbf{8 "}^{\prime \prime}$ on center.

METHOD 1: Face mounted TVs up to 200lbs can be secured to the furring tabs with a minimum of 4 course thread screws. Care must be taken to ensure the screws are properly fastened to the furring tabs. Fastening to Grapplers in combination with furring tabs will also work.

Before installing mounting bracket conceal plywood with drywall compound to blend with drywall (drywall compound not shown for clarity).
METHOD 2: Replace the drywall behind the mounting bracket with plywood.

Fasten the plywood with sufficient number of screws to the furring tabs. will ve foam and replace with $1 / 2^{\prime \prime}$ thick strapping anchored to concrete with Tapcons.

METHOD 3: TV mounts that swivel causes heavier loading conditions and should be anchored to the concrete with plywood and tapcons.

Placing strapping directly against furring tabs ensures $1 / 2^{\prime \prime}$ thick foam is removed and provides good solid backing.

2.20 - HOLDING POWER OF SCREWS FASTENED TO LOGIX FURRING TABS

Web fastener withdrawal and shear testing using course and fine thread drywall screws. Tests were conducted on furring tabs embedded $1 / 2$ inch (52 mm) from the surface of the 2.75 inch (70 mm) Logix EPS panels.

	Max. Average Withdrawal Resistance	Allowable Withdrawal Resistance	Max. Average Shear Resistance	Allowable Shear Resistance 2
Coarse Thread Drywall Screw	$166 \mathrm{lb}(75.3 \mathrm{~kg})$	$33 \mathrm{lb}(15.0 \mathrm{~kg})$	$367 \mathrm{lb}(166.5 \mathrm{~kg})$	$49 \mathrm{lb}(22.2 \mathrm{~kg})$
Fine Thread Drywall Screw	$1691 \mathrm{bb}(76.7 \mathrm{~kg})$	$34 \mathrm{lb}(15.4 \mathrm{~kg})$	$328 \mathrm{lb}(148.8 \mathrm{~kg})$	$49 \mathrm{lb}(22.2 \mathrm{~kg})$

$1 \mathrm{~kg}=9.81$ Newtons

1. Allowable withdrawal resistance values are based on a factor of safety of 5 .
2. Allowable shear resistance values are based on a factor of safety of 3.2 within defined deflection limits (for more detailed information contact info@Logixicf.com)

NOTE: The numbers in this table represent resistance at failure. Good building practice mandates a minimum of a 5 to 1 safety factor in calculating fastener loading. For complete test results on additional fasteners, see Section 8 in the Logix Design Manual or consult your local Logix representative.

Outside Radius, ft. (m)	Form Cavity Width							
	4" (102mm)		6.25" (159mm)		8" (203mm)		10" (254mm)	
	C, in. (mm)	A, in. (mm)						
3 (0.914)	$\begin{gathered} \hline 8 \\ (203) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \hline 13 / 16 \\ & (21) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} \hline 13 / 32 \\ (28) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 1 \text { 19/64 } \\ (33) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 135 / 64 \\ (39) \\ \hline \end{gathered}$
3.5 (1.067)	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} \hline 11 / 16 \\ (17) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 59 / 64 \\ (23) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 32 \\ (28) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 1 \text { 19/64 } \\ (33) \\ \hline \end{gathered}$
4 (1.219)	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 19 / 32 \\ (15) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 51 / 64 \\ (20) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} \hline 61 / 64 \\ (24) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{array}{r} 11 / 8 \\ (29) \\ \hline \end{array}$
4.5 (1.372)	$\begin{gathered} \hline 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 17 / 32 \\ (13) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 45 / 64 \\ (18) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 27 / 32 \\ (21) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (25) \\ \hline \end{gathered}$
5 (1.524)	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 15 / 32 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 / 8 \\ (16) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3 / 4 \\ (19) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} \hline 57 / 64 \\ (23) \\ \hline \end{gathered}$
5.5 (1.676)	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	27/64 (11)	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{aligned} & 9 / 16 \\ & (14) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 43 / 64 \\ (17) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 51 / 64 \\ (20) \\ \hline \end{gathered}$
6 (1.829)	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 25 / 64 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 33 / 64 \\ (13) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 / 8 \\ (16) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 47 / 64 \\ (19) \\ \hline \end{gathered}$
6.5 (1.981)	$\begin{gathered} \hline 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 23 / 64 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 15 / 32 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{aligned} & 9 / 16 \\ & (14) \\ & \hline \end{aligned}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 43 / 64 \\ (17) \\ \hline \end{gathered}$
7 (2.134)	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 21 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8 \\ (203) \\ \hline \end{gathered}$	$\begin{aligned} & 7 / 16 \\ & (11) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 17 / 32 \\ (13) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 / 8 \\ (16) \\ \hline \end{gathered}$

NOTES:

1. Field cut Logix Standard forms (straight forms) into widths, C, according to Logix Radius Walls table. For inside radius field cut additional foam, A, accordingly.
2. Secure each radius section with zip ties, Logix Hooks, tape or foam.
3. The field cuts, C, are kept at $8^{\prime \prime}$ (203mm), 16" (406mm), 24" (610 mm) or $48^{\prime \prime}$ (1220 mm) lengths. The field cuts, A, are determined depending on required radius. The combined field cuts, A and C, results in an outside radius which is within 1% of the design radius for radii less than $60 \mathrm{ft}(18.3 \mathrm{~m})$, and 1% to 2% for radii between 60 ft and 100 ft (18.3 m to 30.5 m).

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.21 - RADIUS WALLS Cont'd

Outside Radius, ft. (m)	Form Cavity Width							
	4" (102mm)		6.25 " (159mm)		8" (203mm)		10" (254mm)	
	C, in. (mm)	A, in. (mm)						
7.5 (2.286)	$\begin{gathered} \hline \hline 8 \\ (203) \\ \hline \end{gathered}$	$5 / 16$ (8)	$\begin{gathered} \hline 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} \hline 13 / 32 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 31 / 64 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 37 / 64 \\ (15) \\ \hline \end{gathered}$
8 (2.438)	$\begin{gathered} \hline 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 32 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 8 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 29 / 64 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 35 / 64 \\ (14) \\ \hline \end{gathered}$
8.5 (2.591)	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 17 / 64 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 23 / 64 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 27 / 64 \\ (11) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 33 / 64 \\ (13) \\ \hline \end{gathered}$
9 (2.743)	$\begin{gathered} \hline 8 \\ (203) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 32 \\ (9) \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 32 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 31 / 64 \\ (12) \\ \hline \end{gathered}$
9.5 (2.896)	$\begin{gathered} \hline 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 15 / 64 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 41 / 64 \\ (16) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 25 / 64 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 29 / 64 \\ (12) \\ \hline \end{gathered}$
10 (3.048)	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 29 / 64 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 39 / 64 \\ (15) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 23 / 64 \\ \text { (9) } \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{aligned} & 7 / 16 \\ & (11) \\ & \hline \end{aligned}$
10.5 (3.200)	$\begin{gathered} \hline 16 \\ (406) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7 / 16 \\ & (11) \\ & \hline \end{aligned}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 37 / 64 \\ (15) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 32 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 32 \\ (10) \\ \hline \end{gathered}$
11 (3.353)	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 27 / 64 \\ (11) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 35 / 64 \\ (14) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 21 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 25 / 64 \\ (10) \\ \hline \end{gathered}$
11.5 (3.505)	$\begin{gathered} \hline 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 25 / 64 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 17 / 32 \\ (13) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8 \\ (203) \\ \hline \end{gathered}$	5/16 (8)	$\begin{gathered} \hline 8 \\ (203) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 3 / 8 \\ & (10) \\ & \hline \end{aligned}$
12 (3.658)	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 8 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 2 \\ & (13) \\ & \hline \end{aligned}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 19 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 23 / 64 \\ (9) \\ \hline \end{gathered}$
12.5 (3.810)	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 23 / 64 \\ (9) \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 31 / 64 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} \hline 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 37 / 64 \\ (15) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 32 \\ (9) \\ \hline \end{gathered}$
13 (3.962)	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 32 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 15 / 32 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 32 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 21 / 64 \\ (8) \\ \hline \end{gathered}$
13.5 (4.115)	$\begin{gathered} \hline 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 21 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 29 / 64 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} \hline 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 17 / 32 \\ (13) \end{gathered}$	$\begin{gathered} \hline 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 5 / 16 \\ (8) \\ \hline \end{gathered}$
14 (4.267)	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 21 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{aligned} & 7 / 16 \\ & (11) \\ & \hline \end{aligned}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 39 / 64 \\ (15) \\ \hline \end{gathered}$
14.5 (4.420)	$\begin{gathered} \hline 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 / 16 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} \hline 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 27 / 64 \\ (11) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 19 / 32 \\ (15) \\ \hline \end{gathered}$
15 (4.572)	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 19 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 32 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 15 / 64 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 37 / 64 \\ (15) \\ \hline \end{gathered}$
15.5 (4.724)	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 19 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 25 / 64 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 15 / 64 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 35 / 64 \\ (14) \\ \hline \end{gathered}$
16 (4.877)	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 27 / 64 \\ (11) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3 / 8 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 17 / 32 \\ & (13) \\ & \hline \end{aligned}$
16.5 (5.029)	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 32 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 23 / 64 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (203) \\ \hline \end{gathered}$	$\begin{gathered} 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 33 / 64 \\ (13) \\ \hline \end{gathered}$
17 (5.182)	$\begin{gathered} 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 32 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} \hline 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 23 / 64 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} \hline 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 27 / 64 \\ (11) \\ \hline \end{gathered}$	$\begin{gathered} \hline 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 1 / 2 \\ (13) \\ \hline \end{gathered}$
17.5 (5.334)	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 25 / 64 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 33 / 64 \\ (13) \\ \hline \end{gathered}$	$\begin{gathered} \hline 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 32 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} \hline 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} \hline 31 / 64 \\ (12) \\ \hline \end{gathered}$
18 (5.486)	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 8 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 1 / 2 \\ (13) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 32 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 15 / 32 \\ & (12) \\ & \hline \end{aligned}$
18.5 (5.639)	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 23 / 64 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 31 / 64 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 25 / 64 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 15 / 32 \\ (12) \\ \hline \end{gathered}$
19 (5.791)	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 23 / 64 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 15 / 32 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3 / 8 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 29 / 64 \\ (12) \\ \hline \end{gathered}$

Outside Radius, ft. (m)	Form Cavity Width							
	4" (102mm)		6.25 " (159mm)		8" (203mm)		10" (254mm)	
	C, in. (mm)	A, in. (mm)						
19.5 (5.944)	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} \hline 11 / 32 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} \hline 15 / 32 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} \hline 16 \\ (406) \end{gathered}$	$\begin{gathered} \hline 3 / 8 \\ (10) \end{gathered}$	$\begin{gathered} \hline 16 \\ (406) \end{gathered}$	$\begin{aligned} & \hline 7 / 16 \\ & (11) \\ & \hline \end{aligned}$
20 (6.096)	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 32 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 29 / 64 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 23 / 64 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 27 / 64 \\ (11) \\ \hline \end{gathered}$
20.5 (6.248)	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$21 / 64$ (8)	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{aligned} & 7 / 16 \\ & (11) \\ & \hline \end{aligned}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 32 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 27 / 64 \\ (11) \\ \hline \end{gathered}$
21 (6.401)	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} \hline 21 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{aligned} & 7 / 16 \\ & (11) \\ & \hline \end{aligned}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 32 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 32 \\ (10) \\ \hline \end{gathered}$
21.5 (6.553)	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 5 / 16 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 27 / 64 \\ (11) \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} \hline 21 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} \hline 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 25 / 64 \\ (10) \\ \hline \end{gathered}$
22 (6.706)	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$5 / 16$ (8)	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 32 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$21 / 64$ (8)	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 25 / 64 \\ (10) \\ \hline \end{gathered}$
22.5 (6.858)	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 19 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 32 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} \hline 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 5 / 16 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} \hline 16 \\ (406) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 3 / 8 \\ & (10) \\ & \hline \end{aligned}$
23 (7.010)	$\begin{gathered} 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 19 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 25 / 64 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 5 / 16 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} \hline 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 8 \\ (10) \\ \hline \end{gathered}$
23.5 (7.163)	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 32 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 25 / 64 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 29 / 64 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 23 / 64 \\ (9) \\ \hline \end{gathered}$
24 (7.315)	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 32 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 8 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 29 / 64 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$23 / 64$ (9)
24.5 (7.468)	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 32 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 47 / 64 \\ (19) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7 / 16 \\ & (11) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 32 \\ (9) \\ \hline \end{gathered}$
25 (7.620)	$\begin{gathered} 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 17 / 64 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 23 / 32 \\ (18) \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ (610) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7 / 16 \\ & (11) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 32 \\ (9) \\ \hline \end{gathered}$
25.5 (7.772)	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 17 / 64 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 45 / 64 \\ (18) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 27 / 64 \\ (11) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 21 / 64 \\ (8) \\ \hline \end{gathered}$
26 (7.925)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 33 / 64 \\ (13) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 45 / 64 \\ (18) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 32 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 21 / 64 \\ (8) \\ \hline \end{gathered}$
26.5 (8.077)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 33 / 64 \\ (13) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 11 / 16 \\ (17) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 32 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$5 / 16$ (8)
27 (8.230)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 2 \\ & (13) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	43/64 (17)	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 25 / 64 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$5 / 16$ (8)
27.5 (8.382)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 2 \\ & (13) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 21 / 32 \\ (17) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 25 / 64 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 5 / 16 \\ (8) \\ \hline \end{gathered}$
28 (8.534)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 31 / 64 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 41 / 64 \\ (16) \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 25 / 64 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (406) \\ \hline \end{gathered}$	$\begin{gathered} 19 / 64 \\ (8) \end{gathered}$
28.5 (8.687)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 15 / 32 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 41 / 64 \\ (16) \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 8 \\ (10) \end{gathered}$	$\begin{gathered} 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 29 / 64 \\ (12) \\ \hline \end{gathered}$
29 (8.839)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 15 / 32 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 5 / 8 \\ (16) \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 8 \\ (10) \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{aligned} & 7 / 16 \\ & (11) \\ & \hline \end{aligned}$
29.5 (8.992)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 29 / 64 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	39/64 (15)	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$23 / 64$ (9)	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7 / 16 \\ & (11) \\ & \hline \end{aligned}$
30 (9.144)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 29 / 64 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 39 / 64 \\ (15) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 23 / 64 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 27 / 64 \\ (11) \\ \hline \end{gathered}$
30.5 (9.296)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 7 / 16 \\ & (11) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 19 / 32 \\ (15) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 45 / 64 \\ (18) \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 27 / 64 \\ (11) \\ \hline \end{gathered}$
31 (9.449)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7 / 16 \\ & (11) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	37/64 (15)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 45 / 64 \\ (18) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 32 \\ (10) \\ \hline \end{gathered}$

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.21 - RADIUS WALLS Cont'd

Outside Radius, ft. (m)	Form Cavity Width							
	4" (102mm)		$6.25{ }^{\prime \prime}$ (159 mm)		8" (203mm)		10" (254mm)	
	C, in. (mm)	A, in. (mm)						
31.5 (9.601)	$\begin{gathered} \hline \hline 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 27 / 64 \\ (11) \end{gathered}$	$\begin{gathered} \hline 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 37 / 64 \\ (15) \\ \hline \end{gathered}$	$\begin{gathered} \hline 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 11 / 16 \\ (17) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} \hline 13 / 32 \\ (10) \\ \hline \end{gathered}$
32 (9.754)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	27/64 (11)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 9 / 16 \\ & (14) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	43/64 (17)	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 25 / 64 \\ (10) \\ \hline \end{gathered}$
32.5 (9.906)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 27 / 64 \\ (11) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 9 / 16 \\ & (14) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 21 / 32 \\ (17) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 25 / 64 \\ (10) \\ \hline \end{gathered}$
33 (10.058)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 32 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 35 / 64 \\ (14) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 21 / 32 \\ (17) \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 25 / 64 \\ (10) \\ \hline \end{gathered}$
33.5 (10.211)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 32 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 17 / 32 \\ (13) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 41 / 64 \\ (16) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{aligned} & 3 / 8 \\ & (10) \end{aligned}$
34 (10.363)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 25 / 64 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 17 / 32 \\ (13) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 41 / 64 \\ (16) \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 8 \\ (10) \\ \hline \end{gathered}$
34.5 (10.516)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 25 / 64 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 33 / 64 \\ (13) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{array}{r} 5 / 8 \\ (16) \\ \hline \end{array}$	$\begin{gathered} 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 8 \\ (10) \\ \hline \end{gathered}$
35 (10.668)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 25 / 64 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 33 / 64 \\ (13) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 39 / 64 \\ (15) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 23 / 64 \\ (9) \\ \hline \end{gathered}$
35.5 (10.820)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 8 \\ (10) \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{aligned} & 1 / 2 \\ & (13) \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 39 / 64 \\ (15) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 23 / 64 \\ (9) \\ \hline \end{gathered}$
36 (10.973)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 8 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 2 \\ & (13) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 19 / 32 \\ (15) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 23 / 64 \\ (9) \\ \hline \end{gathered}$
36.5 (11.125)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 3 / 8 \\ & (10) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 2 \\ & (13) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 19 / 32 \\ (15) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 32 \\ (9) \\ \hline \end{gathered}$
37 (11.278)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 23 / 64 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 31 / 64 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 37 / 64 \\ (15) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 32 \\ (9) \\ \hline \end{gathered}$
37.5 (11.430)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 23 / 64 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 31 / 64 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 37 / 64 \\ (15) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 32 \\ (9) \\ \hline \end{gathered}$
38 (11.582)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 23 / 64 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 15 / 32 \\ & (12) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 9 / 16 \\ & (14) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 21 / 64 \\ (8) \\ \hline \end{gathered}$
38.5 (11.735)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 32 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 15 / 32 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 9 / 16 \\ & (14) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} \hline 21 / 64 \\ (8) \\ \hline \end{gathered}$
39 (11.887)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 32 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 15 / 32 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 35 / 64 \\ (14) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 21 / 64 \\ (8) \\ \hline \end{gathered}$
39.5 (12.040)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 32 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 29 / 64 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 35 / 64 \\ (14) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 21 / 64 \\ (8) \\ \hline \end{gathered}$
40 (12.192)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 32 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 29 / 64 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 17 / 32 \\ (13) \\ \hline \end{gathered}$	$\begin{gathered} \hline 24 \\ (610) \\ \hline \end{gathered}$	$\begin{gathered} 5 / 16 \\ (8) \\ \hline \end{gathered}$
40.5 (12.344)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 21 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 7 / 16 \\ & (11) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 17 / 32 \\ (13) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 5 / 8 \\ (16) \\ \hline \end{gathered}$
41 (12.497)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 21 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 7 / 16 \\ & (11) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 17 / 32 \\ (13) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 5 / 8 \\ (16) \\ \hline \end{gathered}$
41.5 (12.649)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 21 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 7 / 16 \\ & (11) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 33 / 64 \\ (13) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 39 / 64 \\ (15) \\ \hline \end{gathered}$
42 (12.802)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 5 / 16 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 27 / 64 \\ (11) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 33 / 64 \\ (13) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 39 / 64 \\ (15) \\ \hline \end{gathered}$
42.5 (12.954)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 / 16 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 27 / 64 \\ (11) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 2 \\ & (13) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 19 / 32 \\ (15) \\ \hline \end{gathered}$
43 (13.106)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$5 / 16$ (8)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 27 / 64 \\ (11) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 2 \\ & (13) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 19 / 32 \\ (15) \\ \hline \end{gathered}$

Outside Radius, ft. (m)	Form Cavity Width							
	4" (102mm)		6.25" (159mm)		8" (203mm)		10" (254mm)	
	C, in. (mm)	A, in. (mm)						
43.5 (13.259)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} \hline 5 / 16 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 13 / 32 \\ (10) \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} \hline 1 / 2 \\ (13) \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 19 / 32 \\ (15) \end{gathered}$
44 (13.411)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 5 / 16 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 13 / 32 \\ (10) \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} \hline 31 / 64 \\ (12) \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} \hline 37 / 64 \\ (15) \\ \hline \end{gathered}$
44.5 (13.564)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	19/64 (8)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 32 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 31 / 64 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 37 / 64 \\ (15) \\ \hline \end{gathered}$
45 (13.716)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 19 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 13 / 32 \\ (10) \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} \hline 31 / 64 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{aligned} & 9 / 16 \\ & (14) \\ & \hline \end{aligned}$
45.5 (13.868)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$19 / 64$ (8)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 25 / 64 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 15 / 32 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 9 / 16 \\ & (14) \\ & \hline \end{aligned}$
46 (14.021)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	19/64 (8)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 25 / 64 \\ (10) \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	15/32 (12)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	35/64 (14)
46.5 (14.173)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 9 / 32 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 25 / 64 \\ (10) \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 15 / 32 \\ (12) \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	35/64 (14)
47 (14.326)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 32 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{array}{r} 13 / 8 \\ (10) \\ \hline \end{array}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 29 / 64 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 35 / 64 \\ (14) \\ \hline \end{gathered}$
47.5 (14.478)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} \hline 9 / 32 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} \hline 3 / 8 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} \hline 29 / 64 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 17 / 32 \\ (13) \end{gathered}$
48 (14.630)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 32 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{array}{r} \hline 3 / 8 \\ (10) \\ \hline \end{array}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 29 / 64 \\ (12) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 17 / 32 \\ (13) \\ \hline \end{gathered}$
48.5 (14.783)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 32 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 8 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7 / 16 \\ & \hline(11) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 17 / 32 \\ (13) \end{gathered}$
49 (14.935)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 17 / 64 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 23 / 64 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7 / 16 \\ & (11) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} \hline 33 / 64 \\ (13) \\ \hline \end{gathered}$
49.5 (15.088)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	17/64 (7)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$23 / 64$ (9)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7 / 16 \\ & (11) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 33 / 64 \\ (13) \\ \hline \end{gathered}$
50 (15.240)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 17 / 64 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 23 / 64 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 27 / 64 \\ (11) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 33 / 64 \\ (13) \\ \hline \end{gathered}$
50.5 (15.392)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$17 / 64$ (7)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$23 / 64$ (9)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	27/64 (11)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1 / 2 \\ (13) \\ \hline \end{gathered}$
51 (15.545)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	17/64 (7)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$11 / 32$ (9)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	27/64 (11)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{array}{r} 1 / 2 \\ (13) \\ \hline \end{array}$
51.5 (15.697)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$17 / 64$ (7)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 11 / 32 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} \hline 27 / 64 \\ (11) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 1 / 2 \\ (13) \end{gathered}$
52 (15.850)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 32 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 32 \\ (10) \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 31 / 64 \\ (12) \\ \hline \end{gathered}$
52.5 (16.002)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1 / 4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 11 / 32 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 32 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 31 / 64 \\ (12) \\ \hline \end{gathered}$
53 (16.154)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 32 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 32 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 31 / 64 \\ (12) \\ \hline \end{gathered}$
53.5 (16.307)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$21 / 64$ (8)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 32 \\ (10) \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 15 / 32 \\ (12) \\ \hline \end{gathered}$
54 (16.459)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} \hline 21 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} \hline 25 / 64 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 15 / 32 \\ (12) \\ \hline \end{gathered}$
54.5 (16.612)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1 / 4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 21 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 25 / 64 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 15 / 32 \\ (12) \\ \hline \end{gathered}$
55 (16.764)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1 / 4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 21 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 25 / 64 \\ (10) \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 15 / 32 \\ (12) \\ \hline \end{gathered}$

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.21 - RADIUS WALLS Cont'd

Outside Radius, ft. (m)	Form Cavity Width							
	4" (102mm)		6.25 " (159mm)		8" (203mm)		10" (254mm)	
	C, in. (mm)	A, in. (mm)						
55.5 (16.916)	$\begin{gathered} \hline 48 \\ (1,219) \end{gathered}$	$\begin{gathered} \hline 15 / 64 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} \hline 48 \\ (1,219) \end{gathered}$	$\begin{gathered} \hline \hline 21 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 48 \\ (1,219) \end{gathered}$	$\begin{gathered} \hline \hline 25 / 64 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 48 \\ (1,219) \end{gathered}$	$\begin{gathered} \hline \hline 29 / 64 \\ (12) \\ \hline \end{gathered}$
56 (17.069)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 15 / 64 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 / 16 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 8 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 29 / 64 \\ (12) \\ \hline \end{gathered}$
56.5 (17.221)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 15 / 64 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$5 / 16$ (8)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 8 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 29 / 64 \\ (12) \\ \hline \end{gathered}$
57 (17.374)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$15 / 64$ (6)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$5 / 16$ (8)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 8 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 29 / 64 \\ (12) \\ \hline \end{gathered}$
57.5 (17.526)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 15 / 64 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 / 16 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 3 / 8 \\ & (10) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 7 / 16 \\ & (11) \\ & \hline \end{aligned}$
58 (17.678)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 15 / 64 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 5 / 16 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 8 \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 7 / 16 \\ & (11) \\ & \hline \end{aligned}$
58.5 (17.831)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 15 / 64 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 5 / 16 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 23 / 64 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{array}{r} \hline 7 / 16 \\ (11) \\ \hline \end{array}$
59 (17.983)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 19 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 23 / 64 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 7 / 16 \\ & (11) \\ & \hline \end{aligned}$
59.5 (18.136)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 19 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 23 / 64 \\ \text { (9) } \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 27 / 64 \\ (11) \\ \hline \end{gathered}$
60 (18.288)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 19 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 23 / 64 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 27 / 64 \\ (11) \\ \hline \end{gathered}$
60.5 (18.440)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 19 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 23 / 64 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 27 / 64 \\ (11) \\ \hline \end{gathered}$
61 (18.593)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 19 / 64 \\ \text { (8) } \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 32 \\ \text { (9) } \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 27 / 64 \\ (11) \\ \hline \end{gathered}$
61.5 (18.745)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 19 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 32 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 32 \\ (10) \\ \hline \end{gathered}$
62 (18.898)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 9 / 32 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 32 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 13 / 32 \\ & (10) \\ & \hline \end{aligned}$
62.5 (19.050)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 32 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 32 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 32 \\ (10) \\ \hline \end{gathered}$
63 (19.202)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 32 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 32 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 32 \\ (10) \\ \hline \end{gathered}$
63.5 (19.355)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 64 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 9 / 32 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 32 \\ (9) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 32 \\ (10) \\ \hline \end{gathered}$
64 (19.507)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	13/64 (5)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 9 / 32 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$21 / 64$ (8)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 25 / 64 \\ (10) \\ \hline \end{gathered}$
64.5 (19.660)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 13 / 64 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 9 / 32 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 21 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 25 / 64 \\ (10) \\ \hline \end{gathered}$
65 (19.812)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 64 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 32 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 21 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 25 / 64 \\ (10) \\ \hline \end{gathered}$
65.5 (19.964)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$13 / 64$ (5)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$17 / 64$ (7)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$21 / 64$ (8)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 25 / 64 \\ (10) \\ \hline \end{gathered}$
66 (20.117)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 64 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 17 / 64 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 21 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 25 / 64 \\ (10) \\ \hline \end{gathered}$
66.5 (20.269)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 64 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$17 / 64$ (7)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 21 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{aligned} & 3 / 8 \\ & (10) \end{aligned}$
67 (20.422)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 64 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 17 / 64 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 / 16 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{array}{r} 3 / 8 \\ (10) \\ \hline \end{array}$

Outside Radius, ft. (m)	Form Cavity Width							
	4" (102mm)		6.25" (159mm)		8" (203mm)		10" (254mm)	
	C, in. (mm)	A, in. (mm)						
67.5 (20.574)	$\begin{gathered} \hline 48 \\ (1,219) \\ \hline \end{gathered}$	13/64 (5)	$\begin{gathered} \hline 48 \\ (1,219) \\ \hline \end{gathered}$	17/64 (7)	$\begin{gathered} \hline 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 5 / 16 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 3 / 8 \\ (10) \\ \hline \end{gathered}$
68 (20.726)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 64 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 17 / 64 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 5 / 16 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{array}{r} \hline 3 / 8 \\ (10) \\ \hline \end{array}$
68.5 (20.879)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3 / 16 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	17/64 (7)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} \hline 5 / 16 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} \hline 3 / 8 \\ (10) \\ \hline \end{gathered}$
69 (21.031)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 3 / 16 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$17 / 64$ (7)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 5 / 16 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	23/64 (9)
69.5 (21.184)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} \hline 3 / 16 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} \hline 5 / 16 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$23 / 64$ (9)
70 (21.336)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3 / 16 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	19/64 (8)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$23 / 64$ (9)
70.5 (21.488)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3 / 16 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 19 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$23 / 64$ (9)
71 (21.641)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 16 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 19 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$23 / 64$ (9)
71.5 (21.793)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} \hline 3 / 16 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{aligned} & \hline 1 / 4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 19 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$23 / 64$ (9)
72 (21.946)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 3 / 16 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$19 / 64$ (8)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 11 / 32 \\ (9) \\ \hline \end{gathered}$
72.5 (22.098)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$3 / 16$ (5)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	19/64 (8)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$11 / 32$ (9)
73 (22.250)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3 / 16 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 19 / 64 \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 32 \\ (9) \\ \hline \end{gathered}$
73.5 (22.403)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3 / 16 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$15 / 64$ (6)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$19 / 64$ (8)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$11 / 32$ (9)
74 (22.555)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	11/64 (4)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	15/64 (6)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 32 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$11 / 32$ (9)
74.5 (22.708)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	11/64 (4)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$15 / 64$ (6)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$9 / 32$ (7)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 32 \\ (9) \\ \hline \end{gathered}$
75 (22.860)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	11/64 (4)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	15/64 (6)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 32 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$11 / 32$ (9)
75.5 (23.012)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	11/64 (4)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	15/64 (6)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	9/32 (7)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	21/64 (8)
76 (23.165)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 64 \\ (4) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 15 / 64 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 32 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 21 / 64 \\ (8) \\ \hline \end{gathered}$
76.5 (23.317)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	11/64 (4)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	15/64 (6)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 32 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$21 / 64$ (8)
77 (23.470)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	11/64 (4)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$15 / 64$ (6)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 32 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 21 / 64 \\ (8) \\ \hline \end{gathered}$
77.5 (23.622)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	11/64 (4)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$15 / 64$ (6)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	9/32 (7)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$21 / 64$ (8)
78 (23.774)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	11/64 (4)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	15/64 (6)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	17/64 (7)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	21/64 (8)
78.5 (23.927)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 64 \\ (4) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$17 / 64$ (7)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 21 / 64 \\ (8) \\ \hline \end{gathered}$
79 (24.079)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	11/64 (4)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$17 / 64$ (7)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 / 16 \\ (8) \\ \hline \end{gathered}$

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.21 - RADIUS WALLS Cont'd

Outside Radius, ft. (m)	Form Cavity Width							
	4" (102mm)		6.25" (159mm)		8" (203mm)		10" (254mm)	
	C, in. (mm)	A, in. (mm)						
79.5 (24.232)	$\begin{gathered} \hline 48 \\ (1,219) \\ \hline \end{gathered}$	11/64 (4)	$\begin{gathered} \hline 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} \hline 48 \\ (1,219) \\ \hline \end{gathered}$	17/64 (7)	$\begin{gathered} \hline 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 5 / 16 \\ (8) \\ \hline \end{gathered}$
80 (24.384)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	11/64 (4)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$17 / 64$ (7)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 5 / 16 \\ (8) \\ \hline \end{gathered}$
80.5 (24.536)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 11 / 64 \\ (4) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	17/64 (7)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 / 16 \\ (8) \\ \hline \end{gathered}$
81 (24.689)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 5 / 32 \\ (4) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 17 / 64 \\ (7) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 5 / 16 \\ (8) \\ \hline \end{gathered}$
81.5 (24.841)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	5/32 (4)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$17 / 64$ (7)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 / 16 \\ (8) \\ \hline \end{gathered}$
82 (24.994)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	5/32 (4)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} \hline 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	17/64 (7)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} \hline 5 / 16 \\ (8) \\ \hline \end{gathered}$
82.5 (25.146)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	5/32 (4)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5 / 16 \\ (8) \\ \hline \end{gathered}$
83 (25.298)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	5/32 (4)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 19 / 64 \\ (8) \\ \hline \end{gathered}$
83.5 (25.451)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$5 / 32$ (4)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	19/64 (8)
84 (25.603)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	5/32 (4)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$19 / 64$ (8)
84.5 (25.756)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	5/32 (4)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$13 / 64$ (5)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	19/64 (8)
85 (25.908)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 5 / 32 \\ (4) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	13/64 (5)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$19 / 64$ (8)
85.5 (26.060)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$5 / 32$ (4)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	13/64 (5)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	19/64 (8)
86 (26.213)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	5/32 (4)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 64 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 19 / 64 \\ (8) \end{gathered}$
86.5 (26.365)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$5 / 32$ (4)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$13 / 64$ (5)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	19/64 (8)
87 (26.518)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	5/32 (4)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	13/64 (5)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	19/64 (8)
87.5 (26.670)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	5/32 (4)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	13/64 (5)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 32 \\ (7) \\ \hline \end{gathered}$
88 (26.822)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	5/32 (4)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	13/64 (5)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	15/64 (6)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$9 / 32$ (7)
88.5 (26.975)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 5 / 32 \\ (4) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 13 / 64 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 15 / 64 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 32 \\ (7) \\ \hline \end{gathered}$
89 (27.127)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	9/64 (4)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	13/64 (5)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	15/64 (6)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 32 \\ (7) \\ \hline \end{gathered}$
89.5 (27.280)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$9 / 64$ (4)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	13/64 (5)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$15 / 64$ (6)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 9 / 32 \\ (7) \\ \hline \end{gathered}$
90 (27.432)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 64 \\ (4) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	13/64 (5)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$15 / 64$ (6)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 32 \\ (7) \\ \hline \end{gathered}$
90.5 (27.584)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	9/64 (4)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$13 / 64$ (5)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	15/64 (6)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 1 / 32 \\ (7) \\ \hline \end{gathered}$
91 (27.737)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 64 \\ (4) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3 / 16 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 15 / 64 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 32 \\ (7) \\ \hline \end{gathered}$

Outside Radius, ft. (m)	Form Cavity Width							
	4" (102mm)		$6.25{ }^{\prime \prime}$ (159 mm)		8" (203mm)		10" (254mm)	
	C, in. (mm)	A, in. (mm)						
91.5 (27.889)	$\begin{gathered} \hline 48 \\ (1,219) \end{gathered}$	9/64 (4)	$\begin{gathered} \hline 48 \\ (1,219) \end{gathered}$	$\begin{gathered} \hline 3 / 16 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 48 \\ (1,219) \end{gathered}$	$\overline{15 / 64}$ (6)	$\begin{gathered} \hline \hline 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 9 / 32 \\ (7) \\ \hline \end{gathered}$
92 (28.042)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 64 \\ (4) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 16 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 15 / 64 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 32 \\ (7) \\ \hline \end{gathered}$
92.5 (28.194)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$9 / 64$ (4)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 16 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$15 / 64$ (6)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$17 / 64$ (7)
93 (28.346)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 64 \\ (4) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 16 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 15 / 64 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 17 / 64 \\ (7) \\ \hline \end{gathered}$
93.5 (28.499)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$9 / 64$ (4)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$3 / 16$ (5)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$15 / 64$ (6)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$17 / 64$ (7)
94 (28.651)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 64 \\ (4) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 16 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 17 / 64 \\ (7) \\ \hline \end{gathered}$
94.5 (28.804)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$9 / 64$ (4)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 3 / 16 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 17 / 64 \\ (7) \\ \hline \end{gathered}$
95 (28.956)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 64 \\ (4) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 16 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 17 / 64 \\ (7) \\ \hline \end{gathered}$
95.5 (29.108)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	9/64 (4)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 16 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 17 / 64 \\ (7) \\ \hline \end{gathered}$
96 (29.261)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 64 \\ (4) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 16 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 17 / 64 \\ (7) \\ \hline \end{gathered}$
96.5 (29.413)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} \hline 9 / 64 \\ (4) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 16 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 17 / 64 \\ (7) \\ \hline \end{gathered}$
97 (29.566)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 9 / 64 \\ (4) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 3 / 16 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 17 / 64 \\ (7) \\ \hline \end{gathered}$
97.5 (29.718)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$9 / 64$ (4)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 16 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 17 / 64 \\ (7) \\ \hline \end{gathered}$
98 (29.870)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$9 / 64$ (4)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 16 \\ (5) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$
98.5 (30.023)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$9 / 64$ (4)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 64 \\ (4) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$
99 (30.175)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 8 \\ & (3) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 11 / 64 \\ (4) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$
99.5 (30.328)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 8 \\ & (3) \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$11 / 64$ (4)	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{gathered} 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$
100 (30.480)	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{aligned} & 1 / 8 \\ & \text { (3) } \\ & \hline \end{aligned}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 11 / 64 \\ (4) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \end{gathered}$	$\begin{gathered} 7 / 32 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 48 \\ (1,219) \\ \hline \end{gathered}$	$\begin{aligned} & 1 / 4 \\ & (6) \\ & \hline \end{aligned}$

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

2.22 - TALL WALLS

Logix walls can be constructed to any height provided proper engineering and construction methods are used.

Logix tall walls should be designed in accordance with ACI 318 or CAN/CSA A23.3.
Constructing tall walls follows the same basic steps described throughout Section 2. In addition, building taller walls is done in much the same way as concrete pours using traditional formwork. Generally, Logix blocks are stacked and braced, normally 10 to 12 feet high. The concrete is then placed. After the concrete sets Logix blocks are then stacked another 10 to 12 feet, and bracing is raised or extended higher to support the wall, as well as keeping the 3 wall plumb. This process is continued until the specified wall height is reached.

To ensure a smooth build, the following items should be considered:

- Load tables in Section 6 can be used as a design aid for both the builder and designer. However, tall wall designs should be reviewed and approved by a local licensed professional engineer.
- In higher wind areas taller walls may require guy wires for additional support. Typically, this will be determined by the engineer of record.
- Proper consolidation of concrete can be achieved by adequate vibrating. However, depending on the drop height, and the steel congestion, external vibration, in addition to internal vibration, should be considered, particularly at corners, openings, and congested areas of rebar. (External vibrators made specifically for ICFs are available. See Section "2.23SUPPORTING PRODUCTS" on page 94.
- Since tall walls are typically poured using a pump truck, using a 2 1/2" trimmer hose can provide better control of the concrete pour.
- If required, roughen the surface of all cold joints to ensure a good bond between the surface of the old pour and the subsequent pour. In addition, ensure adequate rebar embedments are provided.
- For the final stage of the pour, a Logix Taper Top block can be used, if required, for the top course of the wall. This provides a larger opening for concrete to flow into the wall and also provides a larger bearing area for supporting elements.
- Several tall wall bracing and alignment systems are available. For more information see Section 3.2, Tall Wall Bracing Systems.

NOTE: Both ACI 318 and CAN/CSA A23.3 permit cold joints when concrete is poured in stages.

2.23 - SUPPORTING PRODUCTS

A list of supporting ICF products are shown below. Consult with the listed manufacturer prior to using with Logix Insulated Concrete Forms. Please note: the products listed below does not prohibit the use of Logix ICFs with other supporting products not listed.

FOOTINGS

Product Name	Manufacturer	Contact	Website
Form-A-Drain	CertainTeed Corp.	$708-301-4449$	certainteed.com

EXTERIOR FINISHES

Product Name	Manufacturer	Contact	Website
Durock	Alfacing International Ltd.	$1-888-238-6345$	durock.com
Senerflex	Degussa Wall Systems, Inc.	$1-800-221-9255$	senergy.cc
Sto EIFS System	Sto Corp.	$1-800-221-2397$	stocorp.com
GrailCoat	GrailCoat	$1-877-472-4528$	grailcoat.com
TAFS (Textured Acrylic Finishes	dryvit	$1-800-263-3308$	dryvit.com
SoftCoat PB System	Total Wall, Inc.	$1-888-702-9915$	totalwall.com
Akroflex	Omega Products Corp.	$602-721-5027$	omega-products.com
Impact System	parex	$1-800-537-2739$	parex.com
PermaCrete	Quality Systems	$1-800-607-3762$	permacrete.com
Crack Guard	Poly-Wall	$1-800-846-3020$	poly-wall.com
WeatherWall Systems	Eco Specialty Products Ltd.	$1-888-481-5507$	ecocoatings.ca

WATERPROOFING

Product Name	Manufacturer	Contact	Website
System III	Epro	$1-800-882-1896$	eproserv.com
Blueskin WP2000	Bakor, Inc	$1-800-387-9598$	bakor.com
Colphene 3000	Soprema, Inc	$1-800567-1492$	soprema.com
Delta-MS Clear	Cosella-Dorken Products, Inc.	$1-888-4 D E L T A 4$	cosella-dorken.com
Platon	Armtec Ltd.	$1-800-265-7622$	systemplaton.com
Tamko TW60	Tamko, Inc.	$1-800-641-4691$	tamko.com
Grace waterproofing products	Grace Construction Products	See website	graceconstruction.com
Aqua-Wrap/Green Sheild	Aqua Seal Inc.	$1-888-282-3861$	aquasealusa.com
Protecto Universal Primer Free Membrane	Protecto Wrap	$1-800-759-9727$	protecowrap.com

CONNECTION SYSTEMS

Product Name	Manufacturer	Contact	Website
ICF Ledger Connector System	Simpson Strong-Tie Co., Inc.	$1-800-999-5099$	simpsonstrongtie.com
ICF-Connect	ICF-Connect Ltd.	$1-866-497-1576$	icfconnect.com

ADHESIVE \& SEALANTS

Product Name	Manufacturer	Contact	Website
Enerfoam Sealant/Enerbond Adhesive	Dow Chemical Company	$1-800-800-$ FOAM	dow.com/buildingproducts
PL300	Loctite	$1-800-624-7767$	www.loctiteproducts.com

WALL BRACING \& ALIGNMENT SYSTEMS

Product Name	Manufacturer	Contact	Website
Uniscaffold, LLC	Uniscaffold	$1-208-791-5624$	www.uniscaffold.com
Giraffe Bracing	Giraffe Bracing	$1-888-778-2285$	www.giraffebracing.com
Plumwall	Plumwall Ltd.	$1-905-786-7586$	www.plumwall.com
Mono-Brace	Tapco	$814-336-6549$	www.mono-brace.com
Amazing Brace	Lakeland Group	$905-372-7413$	www.lakeland-multitrade.com

EXTERNAL VIBRATORS

Product Name	Manufacturer	Contact	Website
Brecon	Brecon Inc.	$815-463-8073$	http://icfvibrator.com
Arkie Wall Banger	Available from Wind-lock	$1-800-872-5625$	-

SUPPLIERS OF SUPPORTING ICF PRODUCTS

Company	Contact	Website
Wind-lock	$1-800-872-5625$	wind-lock.com
Grace Construction Products	See website	graceconstruction.com

Build Anything Better. ${ }^{\text {m }}$
3.1 - INTRODUCTION 3-3
3.2 - LOCATION \& SPACING 3-4
3.3 - INSTALLATION 3-5
3.4 - TALL WALL BRACING 3-7
3.4.1 - TALL WALL BRACING SYSTEMS USING SCAFFOLDING 3-8

3.1 - INTRODUCTION

A bracing system provides temporary support for the wall and acts as an alignment system to keep the walls straight and plumb during concrete placement. Typically, the wall alignment system is installed on the inner side of the Logix wall.

There are a number of proprietary systems available. However, each bracing unit typically consists of a vertical upright steel channel with slots for attaching screws to the Logix webs, a turnbuckle arm, and a scaffold bracket. Normally, wall bracing systems are installed after placing 2 to 4 courses of Logix forms (depending on wind and other conditions).

3.2 - LOCATION \& SPACING

- Place bracing no more than $2 \mathrm{ft}(610 \mathrm{~mm}$) from each corner or wall end, and every 7 ft (2134 mm) or less thereafter, in accordance with OSHA/OHSA requirements.
- Every door and window opening should be flanked on either side by bracing units.

The middle of large openings should be vertically braced to prevent tipping.

3.3 - INSTALLATION

Front View

Perspective Cut Section

STEP 1: Attach the upright steel channel to the Logix webs with a \#10 screw in each course. The screws should be snug but not tight.

STEP 2: Attach a turnbuckle arm to the upright with a bolt and then secure to the floor or ground. In light or sandy soils, additional care must be taken to secure diagonal turnbuckle. Ensure wall is close to plumb and threads on the turnbuckle is secured.

STEP 3: The scaffold bracket is then inserted behind the top of the turnbuckle and secured at the bottom with an additional bolt.

STEP 4: Place the appropriate scaffolding planks and rails according to safety regulations. For requirements on toe board and handrail configuration, consult OSHA/OHSA.

STEP 5: Prior to concrete placement, make certain walls are leaning slightly inward. The wall must not lean out at all.

STEP 6: A stringline must be used to achieve straight walls.
STEP 7: Before, during and after concrete placement, the diagonal turnbuckle arm is used to adjust wall straightness to stringline.

3.4 - TALL WALL BRACING

Tall walls are constructed in much the same way as concrete pours using traditional formwork. In general, the Logix blocks are stacked and braced, normally 10 to 12 feet high. The concrete is then placed. After the concrete sets the Logix blocks are then stacked another 10 to 12 feet, and bracing is raised or extended higher to support the wall, as well as keeping the wall plumb. This process is continued until the specified wall height is reached.

In higher wind areas taller walls may require guy wires for additional support.
Logix can be built to any height using either proprietary bracing systems or traditional scaffolding.
There are a number of proprietary tall wall bracing and alignment systems available. Many of the systems are designed to accommodate walls heights from 30 to 50 feet. For a list of some of these systems see " 2.23 SUPPORTING PRODUCTS" on page 94.

With minor modifications traditional scaffold (masonry scaffold) systems can also be used as the bracing and alignment system for tall walls. In addition, more experienced builders may have their own custom bracing systems designed to meet their preferred method of construction.

NOTE: When using wall bracing systems always follow the manufacturer's recommended installation practices, including all required federal and local safety guidelines. Users of Logix and bracing systems should always follow OSHA/OHSA guidelines.

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

3.4 - TALL WALL BRACING cont'd

3.4.1 - TALL WALL BRACING SYSTEMS USING SCAFFOLDING

The following installation instructions demonstrates the use of scaffolding as a tall wall bracing and alignment system. The scaffolding system described is available from Form Systems, Inc. For more information contact your local Logix representative.

STEP 1: Complete two courses making sure they are straight, level and well anchored (Figure A).

STEP 3: Insert the screw jacks into the base frames as seen in Figure C. Create a base frame by attaching two $7 \mathrm{ft}(2.134 \mathrm{~m}$) ledgers (the horizontal pipes) to two base frames. Each ledger end has a wedge to anchor the system together (Figure D). To remove, hit from below. Once base frame is in place, level in all directions.

STEP 2: The first scaffolding items needed are the base frames and screw jacks. The left end of the base frame as seen in Figures B and C is the end that will sit against the forms to allow the screw jacks to be adjusted.

STEP 4: There are two kinds of vertical poles. Poles with the $2 / 3$ rosettes go against the wall. Those with the full rosettes go into the center cup of the base frame (Figure C).

STEP 5: Install the two-foot ledgers that will hold the decks in place on every third rosette from the bottom. Note that the only $7 \mathrm{ft}(2.134 \mathrm{~m})$ ledger required against the wall is on the base frame. The rest of the scaffolding will require 7 ft (2.134 m) ledgers only on one side (Figure F).

STEP 6: Place one wire clip per course at each vertical 2/3 rosette pole (Figure E).

STEP 7: Insert 7ft (2.134 m) ledgers for railings in the two rosettes above the planks (Figure G).
STEP 8: There are two adjustable diagonals. One is $4 \mathrm{ft}(1.220 \mathrm{~m})$ long and is intended to go to the inside of the vertical poles. It's designed to align the wall during the second or third build. For the first build, use the 10ft (3.048 m) external adjustable diagonal (Figure G).
4.1 - INTRODUCTION 4-3
4.2 - MATERIAL TAKE-OFF LIST 4-4
4.3 - ESTIMATING FORMS 4-5
4.3.1 - STANDARD FORMS \& CORNERS 4-5
4.3.2 - BRICK LEDGE FORMS 4-6
4.3.3 - DOUBLE TAPER TOP \& TAPER TOP FORMS 4-6
4.3.4 - HEIGHT ADJUSTERS 4-6
4.3.5 - END CAPS 4-6
4.4 - CONCRETE 4-7
4.4.1-4" WALLS 4-7
4.4.2-6.25" WALLS 4-7
4.4.3-8" WALLS 4-7
4.4.4-10" WALLS 4-8
4.4.5-12" WALLS 4-8
4.4.6 - ADD EXTRA CONCRETE FOR TAPER TOPS 4-8
4.4.7 - ADD EXTRA CONCRETE FOR DOUBLE TAPER TOPS 4-8
4.4.8 - ALTERNATE METHOD FOR CALCULATING CONCRETE 4-8
4.5 - REBAR 4-9
4.6 - WATERPROOFING 4-9
4.7 - PARGING 4-9
4.8 - COURSE HEIGHT TABLE 4-10
4.9 - ESTIMATING FORM 4-11

4.1 - INTRODUCTION

Calculating the number of forms needed is a simple task with Logix.
An important thing to remember in estimating is that walls with different heights should be calculated separately. As the wall heights change, so do the quantities required.

There are several tools available to aid in estimating:

- Drawing a wall section on graph paper before estimating a project saves time and effort.
- The Logix One Minute Estimator provides rough estimates for preliminary estimates, and is available as an app or online.
- The Logix Estimator provides more accurate and very detailed estimates and is on Windows. However, the Logix Estimate can work on a Mac provided Windows Parallel is installed. This program is available for download.

The Logix Estimator and One Minute Estimator are available through the "Download Apps" link on any of the Logixicf.com web pages.

The Logix Estimator (Desktop App)

When you build with Logix ICF, the Logix Estimator will quickly create detailed and accurate take offs, cut lists and more, and will generate professional and accurate customer quotes with the margins you need.
« Download the Logix Estimator

4.2 - MATERIAL TAKE-OFF LIST

The material take off is the first step in any estimate.
__ Linear feet of exterior and interior Logix walls
_ Height of walls
__ Number of courses in wall
___ Thickness of wall (4", $6.25^{\prime \prime}, 8^{\prime \prime}, 10^{\prime \prime}$ or $12^{\prime \prime}$)
__ Number of 90 o corners (both inside and outside)
_ Number of 450 corner (both inside and outside)
_ Linear feet of Brick Ledge
__ Linear feet of Taper Top
__ Linear feet of Double Taper Top
__ Square feet of parge coating "stucco" (height x length) between grade and siding
__ Square feet of water proofing (height x length) from grade to lap over footing
__ Square feet of door and window openings
__ Linear feet of buck material
__ Number of beam pockets (End Caps)
__ Linear feet of end walls (End Caps)
__ Linear feet of Height Adjusters (both sides of wall)

SQUARE FOOTAGE OF DIFFERENT FORM TYPES

Standard (straight):	5.33 sf
Standard V12 (straight)	4.00 sf
Brick Ledge:	5.33 sf
Taper Top:	5.33 sf
Double Taper Top:	5.33 sf
90° Corner (outside face):	5.36 sf (5.89sf for 10" and 12" corner forms)
90° Corner V12 (outside face):	4.02 sf
45° Corner (outside face):	3.89 sf
$4 "$ Height Adjuster:	0.67 sf
Pilaster:	3.49 sf max.

Build Anything Better."

4.3 - ESTIMATING FORMS

Standard, 45° and 90° Corner forms are $16^{\prime \prime}$ in height. Standard V12 and Corner V12 forms are $12^{\prime \prime}$ in height. The following steps are based on 16" heights, however, the same procedure outlined in Section 4.3 .1 is followed for 12" high forms. (Currently, 45° forms in V12 are not available and are formed on-site.)

4.3.1 - STANDARD FORMS \& CORNERS

STEP 1: Determine the total lineal feet of walls (both interior and exterior walls that will be built using Logix). Add an extra 2 ft for every 45° or 90° inside corner to the total lineal feet of walls. With this new lineal footage, multiply by the height of the walls to determine the property's total square footage. When figuring the total square footage of walls with different heights it's easiest to figure each wall separately and then add totals together.

Subtract the total square footage of all window and door openings.
STEP 2: Determine number of 45° forms (A) by multiplying number of 45° turns by the number of courses (i.e. 6 courses $x 4$ turns). Then multiply the number of 45° forms by $3.89 \mathrm{sf} /$ form. Then subtract this from your gross square footage of wall determined in Step 1.

If no 45° turns continue with Step 3.
STEP 3: Determine number of 90° corner forms (B) by multiplying number of 90° turns by the number of courses (i.e. 6 courses $x 4$ turns). Then multiply the number of 90° forms by $5.36 \mathrm{sf} /$ form (or 5.89 sf for $10^{\prime \prime}$ or $12^{\prime \prime}$ corner forms). Then subtract this from your square footage of wall determined in Step 2 (if no 45° turns used, then subtract from gross square footage determined in Step 1).

STEP 4: Divide square footage of wall determined in Step 3 by 5.33 to determine gross number of Standard forms required. (C)

NOTE: Standard forms are all $16^{\prime \prime}(406 \mathrm{~mm})$ tall and $48^{\prime \prime}(1220 \mathrm{~mm})$ long with a wall area of 5.33 sf each. All 90° Corners are $16^{\prime \prime}$ tall. The $4^{\prime \prime}, 6.25^{\prime \prime}$ and $8^{\prime \prime}$ Ninety degree corner forms cover a wall area of 5.36 sf (measured at the longer side of the corner form). The $10^{\prime \prime}$ and $12^{\prime \prime}$ Ninety degree corner forms cover a wall area of 5.89sf.
A. Number of 45° forms required:
B. Number of 90° forms required:
C. Number of Standard forms required:
D. Total number of forms required:
\qquad
\qquad
\qquad

4.3.2 - BRICK LEDGE FORMS

NOTE: Brick Ledge forms are available in straight units only. Corner applications require miter cutting Brick Ledge forms on site.

Brick Ledge forms only come in $6.25^{\prime \prime}, 8^{\prime \prime}, 10^{\prime \prime}$ and $12^{\prime \prime}$ cavity sizes.
STEP 1: Measure the total linear feet of Brick Ledge needed and divide by 4 (the length in feet of each block) to determine the total number of Brick Ledge forms needed. When miter cutting Brick Ledge corners, add one Brick Ledge form for waste at each corner to the total Brick Ledge count.

STEP 2: Subtract the number of Brick Ledge forms from the total number of Standard forms determined earlier to avoid ordering too many Standard forms.

4.3.3 - DOUBLE TAPER TOP \& TAPER TOP FORMS

NOTE: The above forms are available in straight units only. Corner applications require miter cutting the forms on site.

Taper Top and Double Taper Top forms come in 6.25 ", 8 ", $10^{\prime \prime}$ or $12^{\prime \prime}$ cavity sizes.
Follow Steps 1 and 2 in Section 4.3.2 to estimate the number of Taper Top or Double Taper Top forms required.

4.3.4 - HEIGHT ADJUSTERS

A 2 ft Height Adjuster $=0.66 \mathrm{sf}$. The number of 2 ft long Height Adjusters needed is equal to the total linear footage .
NOTES: Height Adjusters come in one size, $4^{\prime \prime} \times 24^{\prime \prime} \times 2.75^{\prime \prime}$ thick. Remember to count both sides of the wall. Height Adjusters can be used in window openings to adjust height without cutting standards.

4.3.5 - END CAPS

NOTES: End Caps are $16^{\prime \prime}$ tall and 2-1/4" thick. End Caps come in all wall cavity sizes $-4 ", 6.25^{\prime \prime}, 8^{\prime \prime}, 10^{\prime \prime}$ and $12^{\prime \prime}$. Use End Caps at end wall applications. Use two End Caps for each beam pocket. Use End Caps for step foundations if necessary. End Caps can be used to form side bucks on door and window openings.

4.4 - CONCRETE

4.4.1-4" WALLS

STEP 1: Take the square footage of all wall area and subtract the square footage of all window and door openings.
STEP 2: Multiply by 0.333 ft (the width of the cavity) to get the cubic feet of concrete required.
STEP 3: Divide by 27cf to determine the total number of yards of concrete required (or divide by 35.32 to determine meters of concrete required).

Example: 1845sf of wall area minus 322 sf of window and door area equals 1523 sf of net wall area. 1523 sf times 0.333 ft equals 507 cf divided by 27 cf per yard equals 18.8 yards of concrete required. Or divide 507 cf by 35.32 for meters required. In this case, 14.4 meters.

4.4.2-6.25" WALLS

STEP 1: Take the square footage of all wall area and subtract the square footage of all window and door openings.
STEP 2: Multiply by 0.521 ft (the width of the cavity) to get the cubic feet of concrete required.
STEP 3: Divide by 27cf to determine the yards of concrete required (or divide by 35.32 to determine meters required).

Example: 1845sf of wall area minus 322 sf of window and door are equals 1523 sf of net wall area. 1523sf times 0.521 ft equals 793 cf divided by 27 cf per yard equals 29.4 yards of concrete. Or divide 793 cf by 35.32 for meters required. In this case, 22.5.

4.4.3-8" WALLS

STEP 1: Take the square footage of all wall area and subtract the square footage of all window and door openings.
STEP 2: Multiply by 0.667 ft (the width of the cavity) to get the cubic feet of concrete required.
STEP 3: Divide by 27 to determine the yards of concrete required (or by 35.32 to determine meters required).
Example: 1845 sf of wall area minus 322 sf of window and door area equals 1523 sf of net wall area. 1523 sf times 0.667 ft equals 1016 cf divided by 27 cf per yard equals 37.6 yards of concrete. Or divide 1016 cf by 35.32 for meters required. In this case, 28.8.

4.4.4-10" WALLS

STEP 1: Take the square footage of all wall area and subtract the square footage of all window and door openings.
STEP 2: Multiply by 0.833 ft (the width of the cavity) to get the cubic feet of concrete required.
STEP 3: Divide by 27cf to determine the total number of yards of concrete required (or by 35.32 to determine meters of concrete required).

Example: 1845sf of wall area minus 322 sf of window and door area equals 1523 sf of net wall area. 1523 sf times 0.833 ft equals 1269 cf divided by 27 cf per yard equals 47.0 yards of concrete required. Or divide 1269 cf by 35.32 for meters required. In this case, 35.9 meters.

4.4.5-12" WALLS

STEP 1: Take the square footage of all wall area and subtract the square footage of all window and door openings.
STEP 2: Multiply by 1 ft (the width of the cavity) to get the cubic feet of concrete required.

4.4.6 - ADD EXTRA CONCRETE FOR TAPER TOPS

Multiply linear feet of Taper Top by 0.003 cubic yards or cubic meters 0.002 to determine the additional yards or meter of concrete needed.

Example: 200If of Taper Top forms would require an additional 0.6 yards of extra concrete (200If $\times 0.003=0.6$ yards).

4.4.7 - ADD EXTRA CONCRETE FOR DOUBLE TAPER TOPS

Multiply linear feet of Double Taper Tops by 0.006 cubic yards or cubic meters 0.005 to determine the additional yards or meter of concrete needed.

Example: 200If of Taper Top forms would require an additional 1.2 yards of extra concrete ($2001 \mathrm{f} \times 0.006=1.2$ yards).

4.4.8 - ALTERNATE METHOD FOR CALCULATING CONCRETE

An alternate method to calculate concrete is to use the chart below. Simply multiply the total number of forms by the appropriate multiplier to determine the cubic yards or cubic meters of concrete required.

)	Form Size	Cubic Yards per Form Unit	Cubic Meters per Form Unit
z	4"	0.066	0.050
\vdash	6.25"	0.103	0.079
	8"	0.132	0.100
-	10"	0.165	0.126
$\stackrel{\vdash}{\sim}$	12"	0.198	0.151

4.5 - REBAR

Rebar estimating varies from wall to wall depending on factors such as height, vertical loading, horizontal loading, backfill heights, etc.

NOTE: Each Brick Ledge will require six stirrups to tie the horizontal rebar in the corbel to the horizontal rebar in the interior of the form.

4.6 - WATERPROOFING

Multiply linear footage of walls by the height of backfill. When calculating backfill height, make sure to add enough height to allow the waterproofing materials to extend over the edge of the footing.

Divide this number by the square footage per roll of membrane material to determine the total number of rolls required.

If using a rigid waterproofing board, do not include a footing overlap in you calculations.

4.7 - PARGING

Parging typically covers from the top of the waterproofing membrane to a height 2" above the bottom edge of the siding.

Multiply the linear footage of wall by height of parging to determine total square footage of parging required.
Divide this number by the square footage per bag of parging material to determine the total number of bags required.

LOGIX® ${ }^{\circledR}$ INSULATED CONCRETE FORMS

4.8 - COURSE HEIGHT TABLE

This table shows wall heights that are readily achieved using Standard Logix forms used in combination with 4" (102mm) Height Adjusters and/or 12" (305mm) V12 forms.

		HEIGHT OF WALL WHEN ADDITIONAL COURSES OF HEIGHT ADJUSTER OR V12s ARE ADDED			
Number of Standard Courses	Height of Wall for Standard Courses	4" Height Adjuster	1 Course of V12	2 Courses of V12	3 Courses of V12
1	1' - 4" (406mm)	1' - 8" (508mm)	2' - 4" (711mm)	3' - 4" (1016mm)	4' - 4" (1321mm)
2	2' - 8" (813mm)	3' - 0' (914mm)	3' - 8" (1118mm)	4' - 8" (1422mm)	5' - 8" (1727mm)
3	4^{\prime} - 0 " (1219 mm)	4' - 4" (1321mm)	5' - 0" (1524mm)	6^{\prime} - 0 " (1829 mm)	7' - 0" (2134mm)
4	5' - 4' (1626mm)	5' - 8" (1727mm)	6' - 4' (1930mm)	7' - 4" (2235mm)	8' - 4" (2540mm)
5	6' - 8" (2032mm)	7' - 0" (2134mm)	7' - 8" (2337mm)	8' - 8" (2642mm)	9' - 8" (2946mm)
6	8' - 0" (2438mm)	8' - 4" (2540mm)	9' - 0" (2743mm)	10' - 0" (3048mm)	11' - 0" (3353mm)
7	9'-4" (2845mm)	9' - 8" (2946mm)	10'-4" (3150mm)	11'-4" (3454mm)	12' - 4" (3759mm)
8	10' - 8" (3251 mm)	11' - 0" (3353mm)	11' - 8" (3556mm)	12' - 8" (3861mm)	13' - 8" (4166mm)
9	12' - 0" (3658mm)	12'-4" (3759mm)	13' - 0" (3962mm)	14' - 0" (4267mm)	15' - 0" (4572mm)
10	13'-4" (4064mm)	13' - 8" (4166mm)	14' - 4" (4369mm)	15' - 4" (4674mm)	16' - 4" (4978mm)
11	14' - 8" (4470mm)	15' - 0" (4572mm)	15' - 8" (4775mm)	16' - 8" (5080mm)	17' - 8" (5385mm)
12	16' - 0" (4877mm)	16' - 4" (4978mm)	17' - 0" (5182mm)	18' - 0" (5486mm)	19' - 0" (5791mm)
13	17'-4" (5283mm)	17' - 8' (5385mm)	18'-4" (5588mm)	19'-4" (5893mm)	20' - 4" (6198mm)
14	18' - 8" (5690mm)	19' - 0" (5791mm)	19'-8" (5994mm)	20' - 8" (6299mm)	21' - 8" (6604mm)
15	20' - 0" (6096mm)	20' - 4" (6198mm)	21' - 0" (6401mm)	22' - 0" (6706mm)	23' - 0" (7010mm)
16	21'-4" (6502mm)	21' - 8" (6604mm)	22'-4" (6807mm)	23'-4" (7112mm)	24' - 4" (7417mm)
17	22'-8" (6909mm)	23' - 0" (7010mm)	23' - 8" (7214mm)	24' - 8" (7518mm)	25' - 8" (7823mm)
18	24' - 0" (7315mm)	24' - 4" (7417mm)	25' - 0" (7620mm)	26' - 0" (7925mm)	27' - 0" (8230mm)
19	25' - 4" (7722mm)	25' - 8" (7823mm)	26' - 4" (8026mm)	27'-4" (8331mm)	28' - 4" (8636mm)
20	26' - 8" (8128mm)	27' - 0" (8230mm)	27' - 8" (8433mm)	28'-8" (8738mm)	29' - 8" (9042mm)
21	28' - 0" (8534mm)	28'-4" (8636mm)	29'-0" (8839mm)	30' - 0" (9144mm)	31' - 0" (9449mm)
22	29'-4" (8941mm)	29'-8" (9042mm)	30' - 4" (9246mm)	31' - 4" (9550mm)	32' - 4" (9855mm)
23	30' - 8" (9347mm)	31' - 0" (9449mm)	31' - 8" (9652mm)	32' - 8" (9957mm)	33' - 8" (10262mm)
24	32' - 0" (9754mm)	32'-4" (9855mm)	33' - 0" (10058mm)	34' - 0" (10363mm)	35' - 0" (10668mm)
25	33'-4" (10160mm)	$33^{\prime}-8{ }^{\prime \prime}(10262 \mathrm{~mm})$	34' - 4' (10465mm)	35' - 4' (10770mm)	36' - 4' (11074mm)

4.9 - ESTIMATING FORM

Customer Name:
Date: \qquad
Project Name: \qquad
Wall Type (Circle): Frost Wall Basement Main Floor Second Floor Other

Form Size (Circle):	$4 "$	$6.25 "$	$8 "$	10	$12 "$

Estimating Data

	Lineal Feet (LF) of Wall		LF Height Adjusters
	Wall Height		LF Extended Brick Ledge
	Number of 90° Turns		LF Taper Top Form
	Number of 45° Turns		Height of Backfill
	Number of Logix Courses		Square Footage (SF) of Openings
	Number of Courses of Standards		Gross SF of Wall (GSF)
	LF Form Lock		Net SF of Wall (NSF)

Quantity	Description	Notes
	Standard Forms	
	Standard V12 Forms	
	90° Corner Forms	
	90° V12 Corner Forms	
	45° Corner Forms	
	Brick Ledge	
	Taper Top Forms	
	Double Taper Top Forms	
	Number of Height Adjusters (2' each)	
	Number of Form Lock (12.5' each)	
	Filament Tape (1 roll/50 blocks)	
	Zip Ties (1 bag/200 blocks)	
	Waterproofing Membrane (200sf/roll)	
	Rolls of Fiber Mesh (475sf/roll)	
	Bags of Prepcoat (85sf/bag)	
	LF/Type Rebar	
	Cubic Yards of Concrete	
	LF Window/Door Buck	
	Number of Alignment System Sets	
	Man Hours/sf	

5.0 - CAD DRAWINGS

(1) 5.1-LOGIX PRODUCTS..5-17
(2) 5.2-WALL SECTIONS

5-38
(3) 5.3-FOOTINGS AT EXTERIOR WALL...........................5-46
(4) 5.4-FOOTINGS AT INTERIOR WALL 5-58
(5) 5.5-FOUNDATION WALLS..5-60
(6) 5.6-FLOOR CONNECTIONS AT EXTERIOR WALL 5-74
(7) 5.7-FLOOR CONNECTIONS AT INTERIOR WALL....... 5-102
(8) 5.8-ROOF \& PARAPETS AT EXTERIOR WALL............ 5-105
(9) 5.9-ROOF \& PARAPETS AT INTERIOR WALL............. 5-122
(10) 5.10-DECKS ... 5-125
(11) 5.11-EXTERIOR FINISHES \& ATTACHMENTS 5-127

Build Anything Better."

(12) 5.12 - WINDOW, DOOR \& GARAGE OR BAY OPENINGS 5-135
(13) 5.13 -WALL-TO-WALL CONNECTIONS 5-152
(14) 5.14 - STEEL REINFORCING 5-161
(15) 5.15 - BEAM CONNECTIONS 5-168
(16) 5.16-COLUMN CONNECTIONS 5-179
ADDITIONAL DRAWING
5.17 - LEDGE \& CORBELS 5-184
5.18 - STC WALL ASSEMBLIES 5-191
5.19 - THEATRES 5-193
5.20 - POOLS 5-194

5.0 - CAD DRAWINGS

CAD drawings applicable for residential and commercial projects are available in the Technical Library at logixicf.com/technical-library in .dwg, .dxf, pdf and .jpg file formats. In addition, please refer to the Technical Library for updated and new drawings.

LOGIX carries both assembled form units, known as LOGIX PRO, and unassembled (or knock-down) systems known as LOGIX KD. In addition, LOGIX carries a number of accessories meant to make designing and constructing with ICFs much faster and easier.

NOTE: The tables and drawings represented herein are believed to be accurate and conforming to current design and construction practices. However, the tables and drawings should be used as a reference guide only. The user shall check to ensure the drawing meets local building codes, design and construction practices by consulting local building officials and professionals, including any additional requirements. Logix reserves the right to make changes to the tables and drawings without notice and assumes no liability in connection with the use of the tables and drawings including modification, copying or distribution.

5.1-LOGIX PRODUCTS
 5.1.1 - PRO FORMS

CAD DRAWINGS-PROFORMS

5.1.1.9 - V12 STANDARD

CAD DRAWINGS-PRO FORMS

5.1.2 - KD FORMS (KNOCK-DOWN FORMS)

CADDRAWINGS-KDFORMS

5.1.2.5 - LOGIX T-WALL

5.1.3 - ACCESSORIES

5.1.3.1 - MISC

CAD DRAWINGS - ACCESORIES: MISC

5.1.3.1.4 - LOGIX XTENDER 5.1.3.1.5-LOGIX HORIZONTAL \& VERTICAL

Joint between blocks	$\mathrm{B} \longleftarrow$

STEEL

$\frac{\text { SIDE ELEVATION }}{\text { (with Xtenders) }}$

SIDE ELEVATION

5.1.3.2 - PRO BUCK

5.1.3.3 - HEAT-SHEET

5.1.3.5 - D-RV PANEL INSERTS

S \perp y ヨSNI f ヨ N \forall d \wedge y-

CAD DRAWINGS - ACCESSORIES: D-RVPANELINSERTS

5.2.1.2-9'-4" WALL WITH THICKENED SLAB

CAD DRAWINGS - WALLSECTIONS

5.2.2-1 STORY PLUS BASEMENT

CAD DRAWINGS - WALLSECTIONS
 5.2.2.7-10" TO 6.25" LOGIX TRANSITION

5.2.3-2 STORY PLUS BASEMENT

CAD DRAWINGS - WALLSECTIONS

5.3 - FOOTINGS AT EXTERIOR WALL 5.3.1 - PRE-CAST SLABS

5.3.2 - GRADE BEAM \& PILES

5.3.3 - BRICK LEDGE

5.3.4 - FOOTINGS FORMED WITH LOGIX

TING FORMED WITH LOGIX
BRICK LEDGE

5.4-FOOTINGS AT INTERIOR WALL
 5.4.1 - GRADE BEAM \& PILES

5.4.2 - SHALLOW FOOTINGS

5.5-FOUNDATION WALLS

5.5.1 - CRAWL SPACE

5.5.1.4-6.25" TO 4" LOGIX CRAWL SPACE

5.5.2 - FROST WALLS

5.5.2.8 - CAST-IN-PLACE SLAB WITH XP-1

 AD

Build Anything Better. ${ }^{\text {m }}$

5.5.3 - BASEMENTS

5.5.4 - WATERPROOFING

5.5.4.2 - BRICK LEDGE FLASHING DETAILS

CAD DRAWINGS-FOUNDATION WALLS

5.6 - FLOOR CONNECTIONS AT EXTERIOR WALL 5.6.1 - LOGIX BEARING LENGTHS

Build Anything Better. ${ }^{\text {™ }}$

CAD DRAWINGS - FLOOR CONNECTIONSATEXTERIORWALL

5.6.2 - WOOD JOISTS

E	

5.6.3 - STEEL JOISTS

5.6.3.6 - OPEN WEB STEEL JOIST FORM
SUPPORT AT FLOOR TRANSITION
NOTES:

1. See Section 6 - Engineering in the LOGIX Design Manual or the
LOGIX Field Manual for reinforcement details.
2. A protective cover, such as tarp, should be placed over Logix form
panels in the vicinity where on-site welding and torch work is
conducted.

5.6.3.5 - STEEL ANGLE TO JOIST

5.6.4 - CAST-IN-PLACE

CAD DRAWINGS - FLOOR CONNECTIONSATEXTERIORWALL

5.6.4.9 - STAIR LANDING

5.6.5 - PRE-CAST SLABS

CAD DRAWINGS - FLOOR CONNECTIONSATEXTERIORWALL

5.6.5.6 - SPANCRETE TOPPING FLUSH TO

OW CORE SLAB WITH XP-1
CURB BLOCK

5.7-FLOOR CONNECTIONS AT INTERIOR WALL

5.7.2 - PRE-CAST SLABS

5.7.3 - STEEL JOISTS

5.8 - ROOF \& PARAPETS AT EXTERIOR WALL

5.8.1 - WOOD

5.8.1.6-2X6 WITH LOGIX TAPER TOP
(s)
5.8.1.5-2X8 OVERHUNG TOP PLATE

CAD DRAWINGS - ROOF \& PARAPETSATEXTERIORWALL

5.8.2.4 - ICF PARAPET: FLAT ROOF ON OPEN WEB JOIST WITH INSULATION

5.8.2.8 - PARAPET WITH SLOPED ROOF

5.8.3 - PRE-CAST

5.8.4 - STRAPS \& ANCHORS

5.8.5 - STRUCTURAL INSULATED PANELS

5.9 - ROOF \& PARAPETS AT INTERIOR WALL 5.9.1 - WOOD

5.9.2 - STEEL

only. The user shall check to ensure the drawing mee local building codes, design and construction practices by

5.10.1 - WEEP SCREED \& FLASHING

Build Anything Better. ${ }^{\text {™ }}$

5.11.2 - ATTACHMENTS

CAD DRAWINGS - EXTERIOR FINISHES \& ATTACHMENTS

5.12 - WINDOW, DOOR \& GARAGE OR BAY OPENINGS 5.12.1 - WINDOWS

5.12.1.5 - WINDOW HEAD / SILL DETAIL 5.12.1.6 - WINDOW HEAD / SILL STEEL FRAME

5.12.2 - DOORS

5.12.3 - GARAGE OR BAY

(

5.13-WALL-TO-WALL CONNECTIONS 5.13.1 - FRAMED WALLS

CAD DRAWINGS-WALL-TO-WALLCONNECTIONS

5.13.2 - EXISTING WALLS

5.13.3 - WALL JOGS

CAD DRAWINGS-WALL-TO-WALLCONNECTIONS
 TO 8" T-WALL WITH END CAP

5.14 - STEEL REINFORCING

5.14.1 - WEB TIE REBAR SLOT LOCATIONS

CAD D R A WINGS - STEEL REINFORCING

5.14.2 - CORNERS

5.14.2.1 - CORNER WALL REINFORCING

A D D R A W I NGS - STEEL REINFORCING

5.14.3 - T-JUNCTIONS

5.15 - BEAM CONNECTIONS 5.15.1 - WOOD BEAMS

SNOPD N

5.15.2.11 - STEEL DECK PORCH COVER

CAD DRAWINGS - BEAM CONNECTIONS

Build Anything Better. ${ }^{\text {™ }}$

CAD DRAWINGS-BEAM CONNECTIONS

5.15.3 - CAST-IN-PLACE

5.16 - COLUMN CONNECTIONS 5.16.1 - WOOD COLUMNS

CAD DRAWINGS-COLUMNCONNECTIONS

5.16.2 - STEEL COLUMNS

CADD R A WINGS - COLUMNCONNECTIONS

5.16.3 - CONCRETE COLUMNS

5.17 - LEDGE \& CORBELS

5.17.1 - LOGIX BRICK LEDGE

5.17.2 - FORMED BRICK LEDGE

5.17.3 - ANGLE IRON SEATS

5.17.4 - CORBELS

5.18 - STC WALL ASSEMBLIES

ECTION PORT FRAME
Logi 1 CF (8 "shown)

Projection
portframe

[^1]

5.20.7 - POOL SKIMMER

S 700 O

2021

$\square \square \square \square / \Delta$

INSULATING CONCRETE FORMS

This page left intentionally blank.

The Insulating Concrete Forms Manufacturers Association Prescriptive ICF Design for Part 9 Structures in Canada

Introduction

Preface

Welcome to the First Edition of the ICFMA Prescriptive ICF Design Tables for Part 9 Buildings in Canada. The following guideline specifications were developed on behalf of the member companies of the Insulating Concrete Form Manufacturers Association (ICFMA) by Tacoma Engineers Inc. with offices in Ontario, Canada.

Objective

The objective of this manual is to provide Prescriptive Tables, Engineering Details and ICF product information that is code compliant for buildings constructed under Part 9 of the 2015 National Building Code of Canada. This manual provides code compliant information for Insulating Concrete Forms across each provincial region of Canada and contains a broad scope of residential designs that cover specific nuances of individual provincial regions. Each of the tables and designs cover the standard specifications for products manufactured or produced by members of the ICFMA. This guide is available in both English and French language versions.

Scope

Design information contained in this guide applies to below-grade and above-grade ICF reinforced concrete walls, both load bearing and nonload bearing, that make up the exterior and/or interior of Part 9 buildings that fall within the limitations of this guide. Floor design/connections and roof design/connections are not covered in this guide and must be designed by others. Any other building component not specifically named in this guide must be designed by others or follow prescriptive provisions contained in the applicable building code. Fire resistance characteristics of ICF/concrete walls are not covered in this guide, but are available from your ICFMA member company upon request.

Applicability

The tables in this manual are the property of the ICFMA and are specific to products offered by ICFMA member companies. The tables are not authorized for use by non-member ICF manufacturers or nonICF methods of concrete forming. If specific questions arise about how to design or reference the tables in this manual of an ICFMA members product check with the technical department of that ICFMA member company. For example: Coursing height may vary between 12 inches and 18 inches depending on brand used. Horizontal tie spacing may vary between 6 inches and 12 inches. Product specific nuances may affect how the tables in the guide are used.
Design information contained in this document is limited to use in buildings described in Section 1 "Design Parameters" of the guide, including a maximum number of below-grade and above-grade stories as well as certain building size limitations. While the intent of this guide are the broadest applicability of Canada and it's individual provinces, there are some limits to applicability, including seismic response and wind loading. Building design may be limited by spans, deflection and aspect ratio among others.
CHECK ALL CONDITIONSTHAT APPLYTOYOUR SITE AND BUILDING DESIGN TO ENSURE COMPATIBILITY WITH THE LIMITATIONS STATED IN SECTION 1 OF THIS GUIDE BEFORE PROCEEDING WITH ITS USE.

Engineered Design

These tables and specifications have been developed and reviewed against the 2015 National Building Code of Canada and CAN/ULC A23.3 by Tacoma Engineers. www.tacomaengineers.com Tables carry a stamp for all Canadian provinces. Check for a stamp applicable to your province before using or referring to the tables.
Review for code compliance will be carried out as building code and standards versions evolve. Check with your ICF member company for the most current guide version available.

Errata

All efforts have been made to create a publication free from errors. If ICFMA is notified of or discovers errors, errata will be published and posted on the ICFMA website at www.icf-ma.org.

Copyright

©2021 Insulating Concrete Form Manufacturers Association
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the copyright owner.
The Insulating Concrete Form Manufacturers Association (ICFMA) is a not-for-profit trade organization and provides this publication solely for the continuing education of qualified building design and construction professionals. This publication should only be used by qualified professionals who possess all required license(s) in the authority having jurisdiction and who are competent to evaluate the significance and limitations of the information provided herein. Any qualified professional who choses to use any of the information found in this publication must accept total responsibility for the application of this information. Other readers should obtain assistance from a Qualified Professional before proceeding.
ICFMA and its members make no express or implied warranty with respect to this publication or any information contained herein. No warranty is made of merchantability or fitness for a particular purpose. ICFMA and its members disclaim any product liability (including without limitation any strict liability in tort) in connection with this publication or any information contained herein.

Acknowledgments

The Insulating Concrete Form Manufacturers Association wishes to express its thanks to the following individuals for their contributions and guidance throughout the process of creating this guide:
Ross Monsour - ICFMA Director
Robert Sculthorpe - Engineering Consultant
Nathan Proper - Tacoma Engineers
Morteza Mehrzadi - Tacoma Engineers

Dennis Micoff-BuildBlock ICF
Francis Roma-Logix ICF

Keven Rector - Nudura ICF

Douglas Bennion - Quad-Lock ICF
Kelvin Doerr - Fox Blocks ICF
Brian Corder - BuildBlock ICF

This page left intentionally blank.

Table of Contents

The Insulating Concrete Forms Manufacturers Association Prescriptive ICF Design for Part 9 Structures in Canada

Introduction 3
Preface 3
Objective. 3
Scope 3
Applicability 3
Engineered Design 3
Errata. 3
Copyright. 3
Acknowledgments 3
Structural Design - National and Provincial Codes and Stamps 5
Design Limitation 9

1. Design Parameters 9
2. Construction 10
3. Concrete 10
4. Reinforcing Steel 10
5. Above Grade and Below Grade Walls 10
5.1 Distributed Reinforcing Steel 11
5.2 Shear Walls 11
5.3 Concentrated Point Loads on Walls. 11
5.4 Window and Door Openings 12
5.4.1 Lintels 12
5.5 Stair Openings. 12
5.6 Laterally Supported Unreinforced Foundation Wall 13
5.7 Laterally Unsupported Foundation Walls (Knee Wall) with WoodFraming Above..6. Wood Ledger Connection .. 13
6. Brick Ledge..13
7. Strip Footing 13
Details \& Tables Index 14
Below \& Above Grade Walls Details and Tables. 17
Detail B. 1. Below Grade Wall Reinforcing Placement for All Wall
Thicknesses.. 17
Detail A.1. Above Grade Wall Reinforcing Placement for 6", 8" and10" Thick Walls.18
Detail A.2. Above Grade Wall Reinforcing Placement for 12 " ThickWalls.19
Detail A.3. Alternating Horizontal Bar Spacing of 12" O.C. and 24 "O.C. to Achieve an Average Spacing of 18" O.C. (Two HorizontalBars in Every Three Rows of ICF Blocks).................................. 20Detail A.4. Three Horizontal Bars in Every Two Rows of 18" HighBlock to Achieve an Average Spacing of 12" O.C......................... 20Detail A.5. Four Horizontal Bars in Every Three Rows of 16 " HighBlock to Achieve an Average Spacing of 12" O.C......................... 21Detail A.6. Alternating Vertical Bar Spacing of 8" O.C. and 16" O.C.to Achieve an Average Spacing of 12" O.C. (Two Vertical Bars inEvery Three Cells) 21Wall Configurations in a Building Without Walkout Basement...... 22Detail A.7.1. Main Floor Walls of One-Story Structure SupportingWood Frame Roof..ngDetail A. 72 Second Floor Walls of a Two-Story ICF StructureSupporting Wood Frame Roof \& Main Floor Walls of a Two-StoryICF Structure Supporting Wood Frame Floors and Roof. 22

Detail A.7.3. Main Floor Walls of a Two-Story Structure Supporting 2nd Story Wood Frame Walls, Floor and Roof.
.
Wall Configurations in a Building with Walkout Basement 24 Detail A.8.1. Main Floor Walls of One-Story Structure Supporting Wood Frame Roof.
Detail A.8.2. Second Floor Walls of a Two-Story ICF Structure Supporting Wood Frame Roof \& Main Floor Walls of a Two-Story ICF Structure Supporting Wood Frame Floors and Roof............. 25 Detail A.8.3. Main Floor Walls of a Two-Story Structure Supporting 2nd Story Wood Frame Walls, Floor and Roof............................. 26
Walkout Basement Wall Configurations. . 27 Detail A.9.1. Walkout Basement Wall of a Single Story ICF Structure Supporting Wood Frame Roof. .. 27 Detail A.9.2. Walkout Basement Wall of a Two-Story ICF Structure Supporting Wood Frame Floors and Roof. 28 Detail A.9.3. Walkout Basement Wall of a Two-Story Building with Main Floor ICF Walls Supporting Second Story Wood Framed Walls, Floor, and Roof..
Detail A.9.4. Walkout Basement Wall of a Two-Story Wood Framed Structure Supporting Wood Frame Floors, and Roof.Walls, Floor, and Roof.

30
Detail A.10. Shear Wall Concentrated Reinforcing Placement..... 31
Detail A.11. Shear Wall Dowels.. 32
Detail A.12. Above and Below Grade Wall Height........................ 33
Lintel Details and Tables ... 63
Concentrated Point Load Table .. 90
Stair Opening Tables .. 91
Laterally Supported Foundation Wall Detail and Table................... 94
Laterally Unsupported Foundation Wall Detail and Table (Knee Wall) .. 95
Detail B.3. Laterally Unsupported Foundation Wall (Knee Wall)... Detail B.4. Laterally Unsupported Foundation Wall (Knee Wall) with
Brick Veneer .. 96
Ledger Connection Detail and Table.. 97
Brick Ledge Detail and Table .. 98
Detail C. 2. Brick Ledge Connection .. 98
Detail C.3. xLerator Ledge Reinforcement.................................... 98
Footing Details and Tables.. 100
Detail F.1. Footing Dowel.. 100
Table F.2- Minimum Exterior Strip Footing Sizes Not Supporting Roof Loads ... 101
Table F.3- Minimum Exterior Strip Footing Sizes Supporting Roof Snow Loads $\leq 2 k P a$.. 102 Table F.4- Minimum Exterior Strip Footing Sizes Supporting Roof Snow Loads $\leq 4 \mathrm{kPa}$... 103

Appendix A: Equivalent Spectral Response Acceleration for ICF
Walls, S $_{\text {a,IcF }}$... 105
Appendix B: Climatic Design Data... 110
Appendix C: Seismic Design Data for Selected Locations in
Canada... 129

This page left intentionally blank.

ICFMA
 INSULATING CONCRETE FORMS
 MANUFACTURERS ASSOCIATION ICF-MA.ORG

The Insulating Concrete Forms Manufacturers Association Prescriptive ICF Design for Part 9 Structures in Canada

Design Limitation

The design tables included in this manual were determined based on the parameters provided in this section. These tables cannot be used if the proposed construction does not meet all the parameters provided in this section or in the tables.

1. Design Parameters

1.1 These tables only apply to residential buildings conforming to Part 9 of the 2015 National Building Code of Canada (NBCC).
1.2 If the proposed construction does not meet the design or applicability of parameters noted herein, a local design professional shall be retained to prepare the design in accordance with applicable standards.
1.3 This design manual applies only to flat ICF walls (concrete core of uniform thickness). All walls must line up vertically.
1.4 In case this document conflicts with design codes, standards and building regulations, the code provisions shall apply.
The design and construction of all work shall conform to the latest editions of the NBCC, the local building code, local regulations and bylaws and the occupational health and safety act.
1.6 These tables have been designed to resist gravity, wind and earthquake forces in accordance with the 2015 NBCC for the criteria indicated in the design limitations and in the design tables.
1.7 Design is limited to one (1) floor below grade and a maximum of two (2) stories above grade.
1.8 The maximum building dimensions are:

Building Area	$300 \mathrm{~m}^{2}$	$3200 \mathrm{ft}^{2}$
Maximum Building Dimension	24.4 m	80 ft
Building Aspect Ratio (Length:Width)		
$\mathrm{S}_{\text {a,lCF }} \leq 0.2$	$2.5: 1$	
$\mathrm{~S}_{\text {allcF }}>0.2$	$2: 1$	
Roof Clear Span	12.2 m	40 ft
Floor Clear Span	7.32 m	24 ft
Second Floor Wall Height	3.05 m	10 ft
Main Floor Wall Height	4.88 m	16 ft
Foundation Wall Height	3.66 m	12 ft

Note: $S_{\text {a,ICF }}$ is the equivalent spectral response acceleration for ICF walls, provided in Appendix A.
1.9 The maximum unfactored gravity loads are:

Roof Snow	4.0 kPa	84 psf
Floor Live	1.9 kPa	40 psf
Roof Dead	0.7 kPa	15 psf
Floor Dead	0.7 kPa	15 psf
Concrete Density	$23.6 \mathrm{kN} / \mathrm{m}^{3}$	$150 \mathrm{lb} / \mathrm{t}^{3}$
Brick Veneer Density	$20.0 \mathrm{kN} / \mathrm{m}^{3}$	$128 \mathrm{lb} / \mathrm{tt}^{3}$
Floor Clear Span	7.32 m	24 ft
Second Floor Wall Height	3.05 m	10 ft
Main Floor Wall Height	4.88 m	16 ft
Foundation Wall Height	3.66 m	12 ft

1.10 The lateral soil pressures against below grade walls are:

Area Surcharge $\left(\mathrm{K}_{\mathrm{o}}=0.5\right)$	2.4 kPa	50 psf
Equivalent Fluid Density of Soil ($\left.\mathrm{K}_{\mathrm{o}}=1.0\right)$	$480-1200 \mathrm{~kg} / \mathrm{m}^{3}$	$30-75 \mathrm{pcf}$

1.11

Only seismic site classes A, B, C and D, as defined in Part 4 of the NBCC, are permitted.
1.15 Wall and lintel deflections have been limited to L/360.

The wind loads are indicated in the design tables.
Seismic limits in wall analysis and design are based on $S_{a}(0.2)$ and $S_{a}(0.5)$ values. In order to simplify the tables, an equivalent seismic spectral response acceleration for ICF walls, $S_{\text {a, ICF }}$ is defined and provided in Appendix A. Equivalent spectral response, S, is used to calculate the seismic shear loads as given in following equation and the limits are indicated in shear wall tables.

$$
V_{\text {seismic }}=F S_{a, 1 C F} W / R_{d} R_{0}
$$

where $F=\max (F(0.5))$ for soil type D or better $=1.47$
1.13 The following peak ground acceleration (PGA) data was used in the analysis of below grade walls. These are the maximum associated values from Appendix C of the 2015 NBCC for the selected $\mathrm{S}_{\mathrm{a}}(0.2)$ values.

$\mathrm{Sa}(0.2)$	0.25	0.7	1.20	1.75
PGA	0.16	0.434	0.724	1.04

1.16

The maximum building aspect ratio is the longest plan dimension divided by the shortest plan dimension of the building. Attached garages can be excluded from the aspect ratio calculation provided they are separated from the main building by ICF walls meeting the requirements of this guide.

2. Construction

2.1 Except as noted otherwise for specific conditions, the design assumes that ALL walls are laterally supported by the building foundation, roof and floor systems, designed by others. Roof and floor systems can be designed in accordance with part 9 of NBCC or building system manufacturers.
2.2 Foundation walls shall be laterally supported at the top and bottom prior to backfilling.
2.3 Provide lateral support at the bottom of the foundation wall in accordance with NBCC 2015 part 9.15.4.4. Alternatively, dowel the wall to the footing as per Table F. 1.
2.4 The contractor shall make adequate provision for construction loads and temporary bracing to keep the structure plumb and in true alignment at all phases of construction.
2.5 Hydrostatic pressure due to water build-up has not been included in the design and analysis. Backfill shall be drained in accordance with NBCC 2015 9.4.4.6.
2.6 Surface grading around the foundation is to slope away from building to allow surface water to drain away.
2.7 Provide adequate frost protection for all foundation walls and footings, both during construction and in the final installation.
2.8 Construction joints shall be made and located so as not to impair the strength of the structure. All specified reinforcing bars shall have minimum lap lengths across all construction joints.
2.9 Construction joints shall not be installed within 610 mm (2ft) of a wall opening.
2.10 All dimensions are in millimeters unless noted otherwise.
2.11 It is the responsibility of the roof and floor designer to ensure adequate bearing for all framing members is provided on the concrete walls.

3. Concrete

3.1 Concrete work shall conform to the latest editions of CSA
3.2 \quad The minimum 28-day compressive strength of concrete shall
3.3 Maximum size of aggregates in concrete walls with minimum concrete cover of 40 mm , are to be $19 \mathrm{~mm}\left(3 / 4^{\prime \prime}\right)$ diameter. Maximum aggregate size shall be limited to $12.5 \mathrm{~mm}\left(1 / 2^{\prime \prime}\right)$ if the concrete cover is less than 40 mm .
3.4 Concrete pours shall be terminated at locations of lateral support.
3.5 Use high frequency vibration to place all concrete. Extra care is needed when vibrating during concrete placement for the purpose of ensuring a homogeneous aggregate distribution, without segregation.
3.6 Take adequate measures to protect concrete from exposure to freezing temperatures and precipitation at least seven days after concrete placement.

4. Reinforcing Steel

4.1 Use Grade 400 deformed rebar placed in accordance with the manual of standard practice.
4.2 Reinforcement size, spacing and placement to be in accordance with notes and design tables for above grade walls, below grade walls and lintels.
4.3 10M bars may be installed as distributed steel where 15M bars are specified provided they are installed at half the spacing required for 15 M bars. 15 M bars may be installed as distributed steel where 10 M bars are specified, but must be installed at the same spacing as specified for the 10 M bars.
b) Bundled bars shall not be spliced over the span of any lintel.
Minimum bar lap length shall be:
a) 450 mm (18") for 10 M bars
b) $650 \mathrm{~mm}(26$ ") for 15 M bars
c) $750 \mathrm{~mm}(30$ ") for 20 M bars

Standard hook lengths shall be:
a) 200 mm (8") for 10 M bars
b) $250 \mathrm{~mm}\left(10^{\prime \prime}\right)$ for 15 M bars
c) 300 mm (12") for 20 M bars

Maintain a minimum concrete clear cover and reinforcement spacing of $40 \mathrm{~mm}\left(1 \frac{1}{2}\right.$ ") for all reinforcing steel, except 20 mm ($3 / 4$ ") cover is permitted for below grade walls of heated buildings. The minimum concrete covers must be maintained for vertical bars in below grade walls.
Where bars within a lintel cannot achieve a minimum concrete side cover and spacing of $40 \mathrm{~mm}\left(11 / 2^{\prime \prime}\right)$, the bars are required to be bundled. The following notes apply to all bundled bars:
a) Groups of parallel reinforcing bars bundled in contact, assumed to act as a unit, with not more than four in any one bundle, may be used. Bundled bars shall be tied, wired, or otherwise fastened together to ensure that they remain in position.

Maximum transverse spacing (gap) between non-contact parallel bars spliced by lap splices, shall not exceed the lesser of one-fifth of the required lap splices length or
150 mm . 150 mm .
Guidance was taken from PCA 100-2017 Prescriptive Design of Exterior Walls for One- and Two-Family Dwellings where steel reinforcement does not meet the minimum requirements of CSA A23.3 Clause 14.1. References to research conducted by PCA for these conditions are included in PCA 100-2017.
4.11 Where the vertical wall reinforcement spacing exceeds maximum spacing requirements according to CSA A23.3 Clause 14.1 the design capacity is at least one third more than required.
4.12 Horizontal temperature and shrinkage reinforcing steel may be less than specified in CSA A23.3. This is due to ideal curing conditions within the ICF system, which reduce the risk of cracking. In addition, finishes are not applied directly to the concrete wall; therefore, the risk of potential cracks propagating to the surface of the finishes is minimized.

5. Above Grade and Below Grade Walls

5.1 Wall thicknesses given in above and below grade wall tables are the nominal thicknesses. The actual thickness of the wall may vary by $\pm 1 / 4$."
5.2 Above grade and below grade walls are designed to resist out-of-plane and in-plane loads by providing the specified reinforcing steel.
Version 2021-1
5.3 Provide horizontal and vertical distributed steel throughout all walls as described in the Distributed Reinforcing Steel section.
5.4 Provide additional concentrated horizontal and vertical steel around door and window openings, beside stair openings, under point loads, and at the ends of all walls and at all corners as described in the Window and Door Openings, Stair Openings, Concentrated Point Loads and Shear Walls sections.
5.5 The specified reinforcing is applicable to building with walkout basements. However, the global slope stability and building stability for unbalance soil pressures created by the walkout condition is by others.
5.6 Provide $600 \mathrm{~mm}(24$ ") $\times 600 \mathrm{~mm}(24$ ") horizontal bent dowel at each corner of the walls. Size and spacing of the dowel should match the horizontal reinforcement as per above and below grade tables.

5.1 Distributed Reinforcing Steel

5.1.1 Horizontal reinforcing is to consist of 10 M or 15 M continuous bars at 300 mm (12") o.c. to 900 mm (36") o.c., in accordance with the tables.
5.1.2 Provide one continuous horizontal bar at maximum 150 mm
5.1.3 Tables B. 1.1, B.2.1, B.3.1 and B.4. 1 provide the necessary distributed vertical steel to resist the out-of-plane loads for below grade ICF walls with 6 " tie spacing.
Tables B. 1. 2, B. 2. 2, B. 3.2 and B. 4.2 provide the necessary distributed vertical steel to resist the out-of-plane loads for below grade ICF walls with 8 " tie spacing.
5.1.5 Tables A. 1. 1 and A. 2. 1 provide the necessary distributed vertical steel to resist the out-of-plane loads for above grade ICF walls with 6 " tie spacing.
5.1.6 Tables A. 2. 1 and A. 2. 2 provide the necessary distributed vertical steel to resist the out-of-plane loads for above grade ICF walls with 8 " tie spacing.
5.1.7 Interpolation within the tables is not permitted.
5.1.8 Any table may be used where the local wind and seismic design values do not exceed the maximum values given in the table.
All basement walls in a building with a walkout condition shall be reinforced as a below grade wall for the maximum backfill height. Place the reinforcing in the center of the wall where the basement wall does not support any backfill.
5.1.10 The vertical distributed reinforcing bar spacing given in millimeters in the tables is the nominal dimension, the bar spacing in inches is the exact dimension. The vertical bar spacing is given as multiples of the form web spacing.
5.1.11 For walls below grade, the vertical reinforcing is to be placed on the inside face of the wall as shown in Detail B. 1.
5.1.12 For walls above grade, the vertical reinforcing is to be placed in the middle of the wall as shown in Detail A. 1.
5.1.13 Walls above grade formed using 300 mm (12") forms shall have all distributed steel placed in two equal layers. One layer is to be placed in the exterior third of the wall and the other layer in the interior third of the wall as shown in Detail A. 2.
5.1.14 The height of an above grade wall is the distance from the top of the floor connection at its base to the bottom of the floor or roof connection at its top, as shown in Detail A. 12.
5.1.15 The height of a below grade wall is the distance from the top of the basement floor slab to the point of bearing for the floor system, as shown in Detail A. 12.
5.1.16 Backfill height against a below grade wall is the distance from the top of the basement floor slab to the finished exterior grade level.
5.1.17 Alternating horizontal bar spacing of 12 " o.c. and 24 " o.c. may be used to achieve an average spacing of 18 " o.c. where

18 " o.c. spacing is specified for horizontal bars as shown in Detail A. 3.
5.1.18 Provide three horizontal bars in every two rows of 18 " high block to achieve an average spacing of 12" o.c. where 12 " spacing o.c. is specified for horizontal bars as shown in Detail A. 4.
5.1.19 Provide four horizontal bars in every three rows of 16 " high block to achieve an average spacing of 12" o.c. where 12 " spacing o.c. is specified for horizontal bars as shown in Detail A. 5.
5.1.20 Alternating vertical bar spacing of 8" o.c. and 16" o.c. may be used to achieve an average spacing of 12 " o.c. where 12 " o.c. spacing is specified for vertical bars as shown in Detail A. 6.
5.1.21 Distributed reinforcing in a wall shall not be less than that required for the wall above.

5.2 Shear Walls

5.2.1 Shear walls are solid ICF wall segments between openings and corners.
5.2.2 Openings 150 mm (6") in diameter and less are permitted within a shear wall, provided they do not occur within 300 mm (12") of the ends of the shear wall.
5.2.3 Shear walls are designed for building with or without walkout basement. Wall configurations for building without and with walkout basement are shown in Detail A. 7 and Detail A. 8, respectively. Wall configurations for walkout basement walls is shown in Detail A. 9.
5.2.4 A minimum number and length of shear walls is required in all four sides of the building on all levels in the building as specified in shear wall tables (A.3. to A.11.) for above grade walls. This is to replace the requirements for 1200 mm long wall segments at each corner in exterior walls specified in NBCC 9.20.17.3.(1) and 9.20.17.4.(1).
5.2.5 Below grade walls shall have the same number and length of shear walls as required for the walls immediately above.
5.2.6 All walls shall be proportionally and evenly distributed in both the transverse and longitudinal direction of the building.
5.2.7 A minimum number of full height vertical reinforcing bars are to be installed at the ends of all required shear walls in accordance with shear wall tables (A.3. to A.11.) for the number and length of shear walls provided. These bars are referred to as concentrated reinforcement and are in addition to the distributed reinforcement specified elsewhere.
5.2.8 The concentrated vertical reinforcement at the ends of each required shear wall is to be placed in accordance with Detail A. 10 .
5.2.9 Matching dowels are to be provided for the concentrated and distributed vertical reinforcement at the base of all required shear walls into floor below as shown in Detail A. 11.
5.2.10 Horizontal reinforcement in shear walls where $\mathrm{S}_{\mathrm{a}, \text { ICF }}>0.2$ shall be terminated at the ends of the wall with a standard hook.
5.2.11 Choose the first column in shear wall tables (A.3. to A.11.) that meets the minimum required number and lengths of shear wall to determine the minimum number of bars to install at the ends of all shear walls (sides of all openings and at each corner). Therefore, first check if there is at least one shear wall that meets the minimum length requirement given in the table for one shear wall. If not, then check if there are at least two shear walls that meet the minimum length requirement given in the table for two shear walls, and so on. When a number of shear walls is found that meets the minimum length requirements, use that column to determine the required concentrated reinforcement at the ends of those shear walls.

5.3 Concentrated Point Loads on Walls

5.3.1 All point loads, such as concentrated loads created by girder trusses, columns and beams, shall bear directly on top of the concrete wall, and shall not be hung or in any other manner

6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

create an eccentric loading on the concrete wall. Provide beam pockets, as necessary.
5.3.2 The minimum length of solid wall without openings directly below point loads, such as concentrated loads created by girder trusses, columns and beams, shall be 6'-0"' In addition to the wall reinforcing required in the following tables, two additional 15M vertical bars shall be installed directly below the point load. This length of solid wall may contain a corner.
5.3.4 Maximum unfactored point loads given in Table C. 1 are only the wall capacity. It is the responsibility of the roof and floor designer to ensure adequate bearing for all framing members is provided on the concrete walls.

5.4 Window and Door Openings

5.4.1 The cumulative width of openings in above grade walls shall not be more than 70% of the total wall length.
5.4.2 The cumulative width of openings in below grade walls shall not be more than 25% of the total wall length.
5.4.3 Openings in below grade walls shall not exceed a maximum width of $1.83 \mathrm{~m}\left(6^{\prime}-0^{\prime \prime}\right)$ and a maximum height of 0.914 m ($3^{\prime}-$ 0").
5.4.4 The length of solid wall between two openings in below grade walls shall be equal to the average width of the openings and at least 1.22 m (4'-0").
5.4.5 A minimum of $2-10 \mathrm{M}$ bars is to be installed completely around all sides of openings.
5.4.6 Provide additional horizontal reinforcing steel directly above the opening as required for lintels.
5.4.7 Horizontal bars above and below the opening shall extend a minimum of 610 mm (24") past opening.
5.4.8 Vertical bars on each side of the opening shall extend the full height of the wall.
5.4.9 Distributed vertical reinforcing steel that is interrupted by an opening shall be replaced by an equal amount of concentrated vertical reinforcing steel with half placed on each side of the opening. The additional steel is to be evenly distributed within a distance equal to half the opening width, up to a maximum of 1.22 m (4'-0"), from each side of the opening. If the spacing of the additional concentrated vertical
reinforcing required on each side of openings, described in the previous note, is less than 150 mm (6"), a local design professional shall be retained to prepare the design in accordance with applicable standards.
5.4.11 Provide additional vertical reinforcing at the sides of openings as required at the ends of shear walls.

5.4.1 Lintels

5.4.1.1 All concrete wall segments above openings are to be considered lintels.
5.4.1.2 The top of all lintels is to be laterally supported by the roof and floor systems, designed by others.
5.4.1.3 Lintels shall be a minimum of 200 mm (8 ") deep.
5.4.1.4 Lintel bottom reinforcing is to be installed a maximum of $89 \mathrm{~mm}\left(3^{1 / 2 ")}\right.$) from the bottom of the lintel and is to extend a minimum of $610 \mathrm{~mm}(24$ ") past the wall opening.
5.4.1.5 A minimum of $2-10 \mathrm{M}$ bars is to be installed completely around all sides of openings, as shown in Detail L. 1.
5.4.1.6 Where stirrups are required for lintels with uniformly distributed load, they shall be single 10M hook stirrups installed around bottom and top bars over the given end distance at each side of the beam as shown in Detail L. 2.
5.4.1.7 Where stirrups are required for lintels with concentrated load, they shall be single 10M hook stirrups installed around
bottom and top bars over the whole length of the beam. 5.4.1.4.
5.4.1.8 Minimum lintel reinforcing is to consist of bottom bars indicated in the design tables, along with horizontal 10M continuous wall reinforcing at 406 mm (16") on center, and a minimum of $1-10 \mathrm{M}$ top bar located 50 mm (2") from the top of the lintel, as shown in Detail L. 3.
5.4.1.9 Provide a minimum of three stirrups in all lintels at the spacing indicated in the tables when $\mathrm{S}_{\mathrm{a}}(0.2)>0.4$.
5.4.1.10 The lintel design tables are only applicable for uniformly distributed gravity line loads and point loads, such as concentrated loads created by girder trusses, columns and beams.
5.4.1.11 Concentrated load lintel tables consider only a single concentrated load acting on anywhere along the lintel span.
5.4.1.12 The lintel tables do not consider uniform and concentrated load to act simultaneously on the lintel.
5.4.1.13 The uniformly distributed load (UDL) is calculated by multiplying the roof and/or floor loads, including snow load (SL), live load (LL) and dead load (DL), by the tributary width (TW) of the roof and/or floor. The tributary width is determined by adding half the span of each rafter/joist bearing on the concrete lintel. For example, the UDL for a lintel supporting floor joists spanning $10^{\prime}-0^{\prime \prime}$ and roof trusses spanning $30^{\prime}-0^{\prime \prime}$ on one side only is calculated as follows:

$$
\begin{aligned}
& \mathrm{UDL}= \mathrm{TW}_{\mathrm{FLOOR}}{ }^{*}\left(\mathrm{LL}_{\mathrm{FLOOR}}+\mathrm{DL}_{\text {FLOOR }}\right)+\mathrm{TW}_{\text {ROOF }}{ }^{*}\left(\mathrm{SL}_{\text {ROOF }}\right. \\
&\left.\quad+\mathrm{DL}_{\mathrm{fROOF}}\right)
\end{aligned}
$$

5.4.1.14 The weight of walls above the lintel has been included in the design of the lintel tables and does not need to be added to the UDL calculated as described above.
5.4.1.15 Where there is less than 305 mm (12") of wall between openings, the lintel shall be reinforced to span over both openings, as shown in Detail L. 4.
5.4.1.16 Where there is less than 610 mm (24") of wall between openings, and openings are greater than 1.53 m ($5^{\prime}-0^{\prime \prime}$) in length, the lintel shall be reinforced to span over both openings, as shown in Detail L. 5.

$\square \begin{gathered}5.5 \text { Stair Ope } \\ 5.5 .1\end{gathered}$

Additional reinforcement is to be provided in exterior walls where a stair opening interrupts the required lateral support provided by the floor framing.
5.5.2 Table A. 12. provides the maximum dimension of stair opening parallel to the wall and the required horizontal reinforcement of above grade walls at stair opening.
5.5.3 Table B. 5. provides the maximum dimension of stair opening parallel to the wall and the required horizontal reinforcement of below grade walls at stair opening. Below grade walls at stair openings are designed for a backfill equivalent fluid density of $480 \mathrm{~kg} / \mathrm{m} 3$ and a maximum $\mathrm{Sa}(0.2)$ of 0.7 . Reinforcement design of below grade walls at stair openings shall be reviewed by a professional engineer if the wall does not meet the requirement of this table.
5.5.4 Lateral restraint of the wall is to be provided by the floor framing on each side of the stair opening, by others.

LOGIX® ${ }^{\circledR}$ INSULATED CONCRETE FORMS

6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

5.5.5	The spacing of distributed vertical reinforcement is to be reduced for a distance of 1.22 m ($4^{\prime}-0^{\prime \prime}$) on each side of the stair opening for above grade and below grade walls. The required spacing is calculated by the following equation and listed in Table A. 13.
	(METRIC) $S_{\text {REDUCED }}=2.44 /\left(\mathrm{L}_{\text {UNSUPPORTED }}+2.44\right) * \mathrm{~S}_{\text {TABLES }}$ $($ IMPERIAL $) S_{\text {Reduced }}=8 /\left(\mathrm{L}_{\text {unsupported }}+8\right) * S_{\text {tables }}$
	```where S S REDUCED = the bar spacing (mm/in) required at the sides of```
	$\mathrm{S}_{\text {TABLES }}=$ the required bar spacing (mm/in) for a laterally supported wall as determined from above grade and below grade walls tables.
	$\mathrm{L}_{\text {unsupported }}=$ the length of wall ( $\mathrm{m} / \mathrm{ft}$ ) that is laterally unsupported as a result of a stair opening in the floor framing.
5.5.6	If the stair opening is out of the scope of design limitations for stair opening table, additional distributed horizontal reinforcing bars are to be added at the stair opening as specified by a professional engineer.
5.6 Laterally Supported Unreinforced Foundation Wall	
5.6.1	Foundation walls in this section are designed for backfill equivalent fluid density of $480 \mathrm{~kg} / \mathrm{m}^{3}$ in accordance with section 9.4.4.6 of NBC 2015 \& OBC 2012r2020.
5.6 .2	If the foundation wall is laterally supported at the top (e.g. by floor joists) and meets all the requirements of NBC 2015 section 9.15.4, and supports only wood frame construction above, a 20 MPa unreinforced concrete wall is adequate for the specific wall and backfill height, as per NBC 2015 table 9.15.4.2.A, shown in Detail B. 2.
5.6.3	Use below grade wall tables if the height of the wall and / or backfilled soil is greater than the maximum values of Table B. 6.
5.6 .4	Use below grade wall tables for walls supporting ICF wall above.
5.7 Laterally Unsupported Foundation Walls (Knee Wall) with Wood	

5.7.1 | If the foundation wall is not supported at the top (e.g. by floor |
| :--- |
| joists) and supports only wood frame construction above, the |
| design can follow the knee wall design as shown in Details |
| B.3 and B.4. The design includes both the footing sizing and |
| reinforcing of the footing and wall. |
| If heights of backfilled soil and / or foundation wall are greater |
| than what shown in these details, reinforcement design of |
| the wall must be reviewed by a professional engineer. |

Foundations are to bear directly on material suitable for 75

## 7. Brick Ledge

7.1 The concrete ledge is to support uniformly distributed loads only. It is not to support concentrated load. A brick ledge section is shown in Detail C. 2.
7.2 Table C. 3. provides the brick ledge capacity as the total height of brick veneer or tributary width of a floor that can be supported per unit length of the brick ledge.
7.3 The capacity given in Table C. 3. is only for the capacity of the brick ledge. The veneer height may be limited by other
building code requirement or manufacturer's installation requirements.

## 8. Strip Footing

8.3
8.9
8.1 Tables F. 2. to F. 4. provides minimum width and thickness of footing for different loadings and soil bearing pressures.
8.2 Soft areas uncovered during excavation shall be subexcavated to sound material and filled with clean and free drained granular soil.
The above grade and below grade wall reinforcing tables include the effects of using the ledge to support floor framing.
The below grade wall reinforcing tables include the effects of using the ledge to support masonry veneer.
The maximum brick height given does not account for windows. To include the effect of windows, it is necessary to calculate an effective brick height.

The ledge reinforcement is 10 M hooked rebar, as shown in Detail C. 2 or xLerator as shown in Detail C. 3. It is to be placed 6 " or 8 " on center matching the tie spacing of ICF blocks.

Protect soil from freezing adjacent to and below all footings.
All footings are to be reinforced with 2-15M continuous bars, as per Detail F. 1.
Tables F. 2. to F. 4. do not include masonry veneer. Increase the footing width by 2 " and the thickness by 1 "for:
a) Every $\mathbf{1 2}^{\prime}-0$ " of masonry veneer for 3000 psf soil bearing capacity.
b) Every $10^{\prime}-0$ " of masonry veneer for 2500 psf soil bearing capacity.
c) Every 8'-0" of masonry veneer for 2000psf soil bearing capacity.
d) Every 6 '-0" of masonry veneer for 1500psf soil bearing capacity.
The footing size for locations with $\mathrm{Sa}(0.2)>0.4$ to be the larger of 30 " wide by 12 " deep or the size shown in the table.
Provide footing dowels as shown in Detail F. 1.
Footing dowels are 10 M or 15 M bars embedded 6 " or 8 " into the footing. Dowels size and spacing is given in Table F. 1.
Provide bent dowels as per Note. 4 of Table F. 1, at shear walls locations matching the size and spacing of vertical bars of the shear walls.

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

## Details \& Tables Index

18 Detail A.1. Above Grade Wall Reinforcing Placement for 6", 8" and 10" Thick Walls.
19 Detail A.2. Above Grade Wall Reinforcing Placement for 12" Thick Walls.
20 Detail A.3. Alternating Horizontal Bar Spacing of 12" O.C. and 24" O.C. to Achieve an Average Spacing of 18" O.C. (Two Horizontal Bars in Every Three Rows of ICF Blocks)
20 Detail A.4. Three Horizontal Bars in Every Two Rows of 18" High Block to Achieve an Average Spacing of 12" O.C.
21 Detail A.5. Four Horizontal Bars in Every Three Rows of 16" High Block to Achieve an Average Spacing of 12" O.C.
21 Detail A.6. Alternating Vertical Bar Spacing of 8" O.C. and 16" O.C. to Achieve an Average Spacing of 12" O.C. (Two Vertical Bars in Every Three Cells)
22 Detail A.7.1. Main Floor Walls of One-Story Structure Supporting Wood Frame Roof.
Detail A.7.2. Second Floor Walls of a Two-Story ICF Structure Supporting Wood Frame Roof \& Main Floor Walls of a Two-Story ICF Structure Supporting Wood Frame Floors and Roof.
Detail A.7.3. Main Floor Walls of a Two-Story Structure Supporting 2nd Story Wood Frame Walls, Floor and Roof.
Detail A.8.1. Main Floor Walls of One-Story Structure Supporting Wood Frame Roof.
25 Detail A.8.2. Second Floor Walls of a Two-Story ICF Structure Supporting Wood Frame Roof \& Main Floor Walls of a Two-Story ICF Structure Supporting Wood Frame Floors and Roof.
26 Detail A.8.3. Main Floor Walls of a Two-Story Structure Supporting 2nd Story Wood Frame Walls, Floor and Roof.
Detail A.9.1. Walkout Basement Wall of a Single Story ICF Structure Supporting Wood Frame Roof.
28 Detail A.9.2. Walkout Basement Wall of a Two-Story ICF Structure Supporting Wood Frame Floors and Roof.
29 Detail A.9.3. Walkout Basement Wall of a Two-Story Building with Main Floor ICF Walls Supporting Second Story Wood Framed Walls, Floor, and Roof.
30 Detail A.9.4. Walkout Basement Wall of a Two-Story Wood Framed Structure Supporting Wood Frame Floors, and Roof.Walls, Floor, and Roo Detail A.11. Shear Wall Dowels.
Detail A.12. Above and Below Grade Wall Height
Detail B. 1. Below Grade Wall Reinforcing Placement for All Wall Thicknesses.
94 Detail B.2. Laterally Supported Foundation Wall
95 Detail B.3. Laterally Unsupported Foundation Wall (Knee Wall)
96 Detail B.4. Laterally Unsupported Foundation Wall (Knee Wall) with Brick Veneer
Detail C.1. Wood Ledger Connection
98 Detail C. 2. Brick Ledge Connection
98 Detail C.3. xLerator Ledge Reinforcement
100 Detail F.1. Footing Dowel
63 Detail L. 1. Reinforcing Around Openings.
64 Detail L. 2. Lintel Stirrup Detail.
64 Detail L. 3. Lintel Section
65 Detail L. 4. Lintel Span with Less Than 305mm (12") of Wall Between Openings.
65 Detail L. 5. Lintel Span with Less Than 610mm (24") of Wall Between Openings, and Openings Are Greater Than 1.53m (5’-0") in Length.

Table A.1.1. Above Grade Wall Distributed Reinforcement for Seismic Zone Classification, Sa,ICF $\leq 0.2$ and Hourly Wind Pressure, $q_{1 / 50} \leq 1.05$ for ICF Walls with 6 " Tie Spacing
Table A.1.2. Above Grade Wall Distributed Reinforcement for Seismic Zone Classification, $\mathrm{S}_{\mathrm{a}, \mathrm{CF}} \leq 0.2$ and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 1.05$ for Walls with 8 " Tie Spacing
Table A.2.1. Above Grade Wall Distributed Reinforcement for Seismic Zone Classification, $S_{a, 1 C F} \geq 0.2$ and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 1.05$ for ICF Walls with 6 " ${ }^{\text {a.tie Spacing }}$
Table A.2.2. Above Grade Wall Distributed Reinforcement for Seismic Zone Classification, $S_{\text {a, ICF }} \geq 0.2$ and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 1.05$ for ICF Walls with $8^{\prime \prime}$ Tie Spacing
Table A.3. Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $\mathrm{S}_{\mathrm{a}, 1 \mathrm{cF}} \leq 0.2$ and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 0.5 \mathrm{kPa}$ (in a Building Without Walkout Basement)
Table A. 4 - Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $\mathrm{S}_{\mathrm{a}, 1 \mathrm{CF}} \leq 0.2$ and Hourly Wind Pressure, $0.5 \mathrm{kPa}<\mathrm{q}_{1 / 50} \leq 0.75 \mathrm{kPa}$ (in a Building Without Walkout Basement)
Table A. 5 - Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $\mathrm{S}_{\mathrm{a}, \mathrm{lcF}} \leq 0.2$ and Hourly Wind Pressure, $0.75 \mathrm{kPa}<\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$ (in a Building Without Walkout Basement)
Table A. 6 - Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $\mathrm{S}_{\mathrm{a}, \mathrm{ICF}}>0.2$ and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$ (in a Building Without Walkout Basement)
Table A.7. Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $\mathrm{S}_{\mathrm{a}, \text { ICF }} \leq 0.2$ and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 0.5 \mathrm{kPa}$ (in a Building With Walkout Basement)
Table A. 8 - Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $\mathrm{S}_{\mathrm{a}, \mathrm{CF}} \leq 0.2$ and Hourly Wind Pressure, $0.5 \mathrm{kPa}<\mathrm{q}_{1 / 50} \leq 0.75 \mathrm{kPa}$ (in a Building With Walkout Basement)
Table A. 9 - Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $\mathrm{S}_{\mathrm{a}, \mathrm{lCF}} \leq 0.2$ and Hourly Wind Pressure, $0.75 \mathrm{kPa}<\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$ (in a Building With Walkout Basement)
Table A. 10 - Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $\mathrm{S}_{\mathrm{a}, \mathrm{ICF}}>0.2$ and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$ (in a Building With Walkout Basement)
Table A. 11 - Above Grade Walkout Basement Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $\mathrm{S}_{\mathrm{a}, \text { ICF }} \leq 0.4$ and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq$ 1.05 kPa

Table A.12. Above Grade Wall Distributed Horizontal Reinforcement at Stair Openings
Table A.13. Bar Spacing Required at Each Side of the Stair Opening
Table B.1.1- Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $\mathrm{Sa}(0.2) \leq 0.25$ and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$, for ICF Walls with 6 " Tie Spacing
Table B.1.1. Continued - Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $\mathrm{Sa}(0.2) \leq 0.25$ and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$, for ICF Walls with 6 " Tie Spacing
Table B.1.2.- Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $\mathrm{Sa}(0.2) \leq 0.25$ and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$, for ICF Walls with 8 " Tie Spacing
Table B.1.2. Continued - Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $\mathrm{Sa}(0.2) \leq 0.25$ and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$, for ICF Walls with 8 " Tie Spacing

## LOGIX® ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table B.2.1. - Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.25<\mathrm{Sa}(0.2) \leq 0.70$ and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$, for ICF Walls with 6" Tie Spacing
Table B.2.1. Continued - Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.25<\mathrm{Sa}(0.2) \leq$ 0.70 and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$, for ICF Walls with 6 " Tie Spacing
40 Table B.2.2. - Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.25<\mathrm{Sa}(0.2) \leq 0.70$ and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$, for ICF Walls with 8 " Tie Spacing
41 Table B.2.2. Continued - Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.25<\mathrm{Sa}(0.2) \leq$ 0.70 and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$, for ICF Walls with 8" Tie Spacing
42 Table B.3.1 - Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.70<\mathrm{Sa}(0.2) \leq 1.2$ and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$, for ICF Walls with 6 " Tie Spacing
Table B.3.1. Continued - Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.70<\mathrm{Sa}(0.2) \leq$ 1.2 and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$, for ICF Walls with 6 " Tie Spacing
Table B.3.2. - Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.70<\mathrm{Sa}(0.2) \leq 1.2$ and Hourly Wind Pressure, $q_{1 / 50} \leq 1.05 \mathrm{kPa}$, for ICF Walls with 8 " Tie Spacing
Table B.3.2. Continued- Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.70<\mathrm{Sa}(0.2) \leq$ 1.2 and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$, for ICF Walls with 8" Tie Spacing
Table B.4.1. - Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $1.2<\mathrm{Sa}(0.2) \leq 1.75$ and Hourly Wind Pressure, $q_{1 / 50} \leq 1.05 \mathrm{kPa}$, for ICF Walls with 6" Tie Spacing
Table B.4.1. Continued- Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $1.2<\mathrm{Sa}(0.2) \leq$ 1.75 and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$, for ICF Walls with 6 " Tie Spacing
Table B.4.2. - Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $1.2<\mathrm{Sa}(0.2) \leq 1.75$ and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$, for ICF Walls with 8 " Tie Spacing
Table B.4.2. Continued- Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $1.2<\mathrm{Sa}(0.2) \leq$ 1.75 and Hourly Wind Pressure, $q_{1 / 50} \leq 1.05 \mathrm{kPa}$, for ICF Walls with 8" Tie Spacing
Table B. 5. Below Grade Wall Distributed Horizontal Reinforcement at Stair Opening for Seismic Zone Classification $\mathrm{Sa}(0.2) \leq 0.7$, Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$, and Backfill
Table B.6. Maximum Height of Finish Ground Above Basement Floor
Table C.1. Maximum Unfactored Point Load on a Solid Wall Without Opening
Table C.2. Floor Ledger Anchor Bolts Size and Spacing
Table C. 3 Brick Ledge Load Capacity
Table C-3 (Continued)

102 Table F.3- Minimum Exterior Strip Footing Sizes Supporting Roof Snow Loads $\leq 2 \mathrm{kPa}$
103 Table F.4- Minimum Exterior Strip Footing Sizes Supporting Roof Snow Loads $\leq 4 \mathrm{kPa}$
Table L1 6" Lintel Reinforcement with Uniformly Distributed Load
Table L1 Continued
Table L1 Continued
Table L2 8" Lintel Reinforcement with Uniformly Distributed Load Table L2 Continued
Table L2 Continued
Table L3 10" Lintel Reinforcement with Uniformly Distributed Load Table L3 Continued

Table L3 Continued
Table L4 12" Lintel Reinforcement with Uniformly Distributed Load Table L4 Continued
Table L4 Continued
Table L5 6" Lintel Reinforcement Concentrated Load
Table L5 Continued
Table L5 Continued
Table L6 8" Lintel Reinforcement Concentrated Load Table L6 Continued
Table L6 Continued
Table L7 10" Lintel Reinforcement Concentrated Load
Table L7 Continued
Table L7 Continued
87
88
89
Table C-3 (Continued)
Table C-3 (Continued)
Table C-3 (Continued)
Table C-3 (Continued)
Table F.1- Footing Dowels Size and Spacing
Table F.2- Minimum Exterior Strip Footing Sizes Not Supporting Roof Loads

This page left intentionally blank.

## Below \& Above Grade Walls Details and Tables



Detail B. 1. Below Grade Wall Reinforcing Placement for All Wall Thicknesses.


SPACE VERTICAL AND HORIZONTAL REINFORCING BARS AS PER THE TABLES

## Detail A.1. Above Grade Wall Reinforcing Placement for 6", 8" and 10"Thick Walls.

Build Anything Better. ${ }^{\text {m" }}$


> SPACE VERTICAL AND HORIZONTAL REINFORCING BARS AS PER THE TABLES

Detail A.2. Above Grade Wall Reinforcing Placement for 12"Thick Walls.

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS



Detail A.3. Alternating Horizontal Bar Spacing of 12" O.C. and 24" O.C. to Achieve an Average Spacing of 18" O.C. (Two Horizontal Bars in Every Three Rows of ICF Blocks)


Detail A.4. Three Horizontal Bars in Every Two Rows of 18" High Block to Achieve an Average Spacing of 12" O.C.


Detail A.5. Four Horizontal Bars in Every Three Rows of 16" High Block to Achieve an Average Spacing of 12" O.C.


Detail A.6. Alternating Vertical Bar Spacing of 8" O.C. and 16" O.C. to Achieve an Average Spacing of 12" O.C. (Two
Vertical Bars in Every Three Cells) Vertical Bars in Every Three Cells)

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

## Wall Configurations in a Building Without Walkout Basement



Detail A.7.1. Main Floor Walls of One-Story Structure Supporting Wood Frame Roof.


Detail A.7.2. Second Floor Walls of a Two-Story ICF Structure Supporting Wood Frame Roof \& Main Floor Walls of a Two-Story ICF Structure Supporting Wood Frame Floors and Roof.


## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

## Wall Configurations in a Building with Walkout Basement



Detail A.8.1. Main Floor Walls of One-Story Structure Supporting Wood Frame Roof.


Detail A.8.2. Second Floor Walls of a Two-Story ICF Structure Supporting Wood Frame Roof \& Main Floor Walls of a Two-Story ICF Structure Supporting Wood Frame Floors and Roof.

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS



## Detail A.8.3. Main Floor Walls of a Two-Story Structure Supporting 2nd Story Wood Frame Walls, Floor and Roof.

## Walkout Basement Wall Configurations



Detail A.9.1. Walkout Basement Wall of a Single Story ICF Structure Supporting Wood Frame Roof.

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS




Detail A.9.3. Walkout Basement Wall of a Two-Story Building with Main Floor ICF Walls Supporting Second Story Wood Framed Walls, Floor, and Roof.

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS



Detail A.9.4. Walkout Basement Wall of a Two-Story Wood Framed Structure Supporting Wood Frame Floors, and Roof.Walls, Floor, and Roof.


Detail A.10. Shear Wall Concentrated Reinforcing Placement.

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS



Detail A.12. Above and Below Grade Wall Height

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table B.1.1.- Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $\mathrm{Sa}(0.2) \leq 0.25$ and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$, for ICF Walls with 6" Tie Spacing

$\begin{array}{\|c} \text { Wall Height } \\ m \\ (\mathrm{ft}) \end{array}$	Backfill Height m (ft)		Vertical Steel (Size and Spacing)																							
			$480 \mathrm{~kg} / \mathrm{m} 3$ (30 pcf) $\quad$ Backfill Equival												nt Fluid Density $720 \mathrm{~kg} / \mathrm{m3}$ (45 pcf)											
			150 mm (6") Wall			200 mm (8") Wall			250 mm (10") Wall			300 mm (12") Wall			150 mm (6") Wall			200 mm (8") Wall			250 mm (10") Wall			300 mm (12") Wall		
$\begin{aligned} & 2.44 \\ & (8.0) \end{aligned}$	1.22	(4.0)	10M @	450	(18)	10M @	750	(30)	10M @	900	(36)	10M@	900	(36)	10M @	450	(18)	10M @	600	(24)	10M @	900	(36)	10M @	900	(36)
	1.53	(5.0)	10M @	450	(18)	10M @	600	(24)	10M @	900	(36)	10M@	900	(36)	15M @	600	(24)	10M@	450	(18)	10M@	750	(30)	10M @	900	(36)
	1.83	(6.0)	15M @	600	(24)	10M @	450	(18)	10M @	750	(30)	10M @	900	(36)	15M @	450	(18)	15M @	750	(30)	10M@	600	(24)	10M @	750	(30)
	2.13	(7.0)	15M @	450	(18)	15M @	750	(30)	10M @	600	(24)	10M@	750	(30)	15M@	450	(18)	15M@	600	(24)	10M@	450	(18)	10M @	600	(24)
	2.44	(8.0)	15M @	450	(18)	15M @	600	(24)	10M @	450	(18)	10M@	600	(24)	15M@	300	(12)	15M@	450	(18)	15M @	600	(24)	15M @	900	(36)
$\begin{aligned} & 2.74 \\ & (9.0) \end{aligned}$	1.22	(4.0)	15M@	750	(30)	10M @	600	(24)	10M @	900	(36)	10M@	900	(36)	15M @	750	(30)	10M@	600	(24)	10M@	750	(30)	10M @	900	(36)
	1.53	(5.0)	15M@	750	(30)	10M @	450	(18)	10M @	750	(30)	10M@	900	(36)	15M @	600	(24)	10M @	450	(18)	10M @	600	(24)	10M @	900	(36)
	1.83	(6.0)	15M @	600	(24)	15M @	900	(36)	10M @	600	(24)	10M @	900	(36)	15M @	450	(18)	15M @	750	(30)	10M @	450	(18)	10M @	600	(24)
	2.13	(7.0)	15M@	450	(18)	15M@	750	(30)	10M @	450	(18)	10M@	750	(30)	15M @	450	(18)	15M @	600	(24)	15M @	750	(30)	15M @	900	(36)
	2.44	(8.0)	15M @	300	(12)	15M @	600	(24)	15M@	900	(36)	15M@	900	(36)	15M@	300	(12)	15M @	450	(18)	15M @	600	(24)	15M @	750	(30)
	2.74	(9.0)	15M @	300	(12)	15M @	450	(18)	15M @	750	(30)	15M @	900	(36)	15M @	150	(6)	15M @	450	(18)	15M @	450	(18)	15M @	600	(24)
$\begin{gathered} 3.05 \\ (10.0) \end{gathered}$	1.22	(4.0)	15M@	750	(30)	10M@	600	(24)	10M @	900	(36)	10M @	900	(36)	15M @	750	(30)	10M @	450	(18)	10M@	750	(30)	10M @	900	(36)
	1.53	(5.0)	15M @	750	(30)	15M @	900	(36)	10M @	750	(30)	10M @	900	(36)	15M @	600	(24)	15M @	750	(30)	10M @	600	(24)	10M @	750	(30)
	1.83	(6.0)	15M@	450	(18)	15M @	750	(30)	10M @	600	(24)	10M@	750	(30)	15M@	450	(18)	15M @	600	(24)	10M @	450	(18)	10M @	600	(24)
	2.13	(7.0)	15M @	450	(18)	15M @	600	(24)	10M @	450	(18)	10M@	600	(24)	15M @	300	(12)	15M @	450	(18)	15M @	750	(30)	15M @	900	(36)
	2.44	(8.0)	15M @	300	(12)	15M @	450	(18)	15M @	750	(30)	15M@	900	(36)	15M @	300	(12)	15M @	450	(18)	15M @	600	(24)	15M @	750	(30)
	2.74	(9.0)	15M @	150	(6)	15M@	450	(18)	15M @	600	(24)	15M@	750	(30)	15M@	150	(6)	15M@	300	(12)	15M@	450	(18)	15M @	600	(24)
	3.05	(10.0)	15M@	150	(6)	15M @	300	(12)	15M @	450	(18)	15M@	750	(30)	15M@	150	(6)	15M@	300	(12)	15M@	450	(18)	15M @	450	(18)
$\begin{aligned} & 3.35 \\ & (11.0) \end{aligned}$	1.22	(4.0)	15M@	750	(30)	10M @	450	(18)	10M@	750	(30)	10M@	900	(36)	15M@	600	(24)	10M@	450	(18)	10M@	750	(30)	10M @	900	(36)
	1.53	(5.0)	15M @	600	(24)	15M @	900	(36)	10M @	600	(24)	10M@	900	(36)	15M@	450	(18)	15M@	750	(30)	10M@	450	(18)	10M @	750	(30)
	1.83	(6.0)	15M@	450	(18)	15M@	750	(30)	10M @	450	(18)	10M@	750	(30)	15M @	450	(18)	15M@	600	(24)	10M @	450	(18)	10M @	600	(24)
	2.13	(7.0)	15M @	300	(12)	15M@	600	(24)	15M @	750	(30)	15M @	900	(36)	15M @	300	(12)	15M @	450	(18)	15M @	600	(24)	15M @	900	(36)
	2.44	(8.0)	15M@	300	(12)	15M @	450	(18)	15M @	600	(24)	15M@	900	(36)	15M@	150	(6)	15M@	450	(18)	15M@	450	(18)	15M @	600	(24)
	2.74	(9.0)	15M@	150	(6)	15M@	300	(12)	15M@	600	(24)	15M@	750	(30)	15M@	150	(6)	15M@	300	(12)	15M@	450	(18)	15M @	450	(18)
	3.05	(10.0)	15M@	150	(6)	15M @	300	(12)	15M @	450	(18)	15M@	600	(24)	15M@	150	(6)	15M@	150	(6)	15M@	300	(12)	15M @	450	(18)
	3.35	(11.0)	15M @	150	(6)	15M @	300	(12)	15M@	300	(12)	15M@	450	(18)	15 M @	150	(6)	15M@	150	(6)	15M@	300	(12)	15M @	300	(12)
Wl/	1.22	(4.0)	15M @	600	(24)	10M @	450	(18)	10 M @	750	(30)	10M@	900	(36)	15M@	600	(24)	15M@	750	(30)	10M @	600	(24)	10 M @	900	(36)
	1.53	(5.0)	15M @	600	(24)	15M @	750	(30)	10M @	600	(24)	10M @	900	(36)	15M@	450	(18)	15M @	600	(24)	10M@	450	(18)	10M @	750	(30)
	1.83	(6.0)	15M @	450	(18)	15M @	600	(24)	10M @	450	(18)	10M@	600	(24)	15M@	300	(12)	15M@	600	(24)	15M @	750	(30)	15M @	900	(36)
	2.13	(7.0)	15M @	300	(12)	15M @	600	(24)	15M @	750	(30)	15M@	900	(36)	15M@	300	(12)	15M@	450	(18)	15M @	600	(24)	15M @	750	(30)
	2.44	(8.0)	15M @	150	(6)	15M @	450	(18)	15M @	600	(24)	15M @	900	(36)	15M @	150	(6)	15M @	300	(12)	15M @	450	(18)	15M @	600	(24)
	2.74	(9.0)	15M @	150	(6)	15M @	300	(12)	15M @	450	(18)	15M@	600	(24)	15M@	150	(6)	15M@	300	(12)	15M@	450	(18)	15M @	450	(18)
	3.05	(10.0)	15M @	150	(6)	15M @	300	(12)	15M @	300	(12)	15M@	450	(18)	15M@	150	(6)	15M@	150	(6)	15M @	300	(12)	15M @	450	(18)
	3.35	(11.0)	15M@	150	(6)	15M@	150	(6)	15M @	300	(12)	15M@	450	(18)				15M@	150	(6)	15M@	300	(12)	15M@	300	(12)
	3.66	(12.0)				15M @	150	(6)	15M@	300	(12)	15M@	300	(12)				15M@	150	(6)	15M @	150	(6)	15M @	300	(12)
Horizontal Reinforcement	$\begin{array}{r} \text { Block } \\ 12^{\prime \prime} \mathrm{a} \\ \hline \end{array}$	$\begin{aligned} & \text { leight of } \\ & \text { nd } 18 \text { " } \end{aligned}$	10M @	900	(36)																					
	$\begin{array}{r} \text { Block } \\ \text { of } \end{array}$	Height   16"	10M @	800	(32)	10 M @	800	(32)	10M @	800	(32)	10M@	800	(32)	10M@	800	(32)	10M@	800	(32)	10M @	800	(32)	10M @	800	(32)

## NOTES

[^2]
## - 32

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table B.1.1. Continued - Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $\mathrm{Sa}(0.2) \leq 0.25$ and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$, for ICF Walls with 6 " Tie Spacing

$\begin{array}{\|c} \text { Wall Height } \\ m \\ (\mathrm{ft}) \end{array}$	Backfill Height m (ft)		Vertical Steel (Size and Spacing)																							
			$960 \mathrm{~kg} / \mathrm{m} 3(60 \mathrm{pcf}) \quad$ Backfill Equival												nt Fluid Density $1200 \mathrm{~kg} / \mathrm{m} 3$ (75 pcf)											
			150 mm (6") Wall			200 mm (8") Wall			250 mm (10") Wall			300 mm (12") Wall			150 mm (6") Wall			200 mm ( $8^{\prime \prime}$ ) Wall			250 mm (10)" Wall			300 mm (12") Wall		
$\begin{aligned} & 2.44 \\ & (8.0) \end{aligned}$	1.22	(4.0)	15M@	600	(24)	10M @	450	(18)	10M@	750	(30)	10M @	900	(36)	15M @	600	(24)	10M @	450	(18)	10M @	750	(30)	10M @	900	(36)
	1.53	(5.0)	15M@	600	(24)	10M@	450	(18)	10M@	600	(24)	10M@	900	(36)	15M@	450	(18)	15M @	750	(30)	15M @	900	(36)	10M@	750	(30)
	1.83	(6.0)	15M@	450	(18)	15M @	600	(24)	10M@	450	(18)	10M@	600	(24)	15M @	450	(18)	15M @	450	(18)	15M@	750	(30)	15M@	900	(36)
	2.13	(7.0)	15M@	300	(12)	15M @	450	(18)	15M@	600	(24)	15M@	900	(36)	15M @	300	(12)	15M @	450	(18)	15M @	600	(24)	15M @	750	(30)
	2.44	(8.0)	15M @	300	(12)	15M @	450	(18)	15M@	450	(18)	15M@	750	(30)	15M @	150	(6)	15M @	300	(12)	15M @	450	(18)	15M @	600	(24)
$\begin{aligned} & 2.74 \\ & (9.0) \end{aligned}$	1.22	(4.0)	15M@	600	(24)	10M@	450	(18)	10M@	600	(24)	10M@	900	(36)	15M@	600	(24)	15M @	900	(36)	10M@	450	(18)	10M@	900	(36)
	1.53	(5.0)	15M@	450	(18)	15M@	600	(24)	15M@	600	(24)	10M@	750	(30)	15M @	450	(18)	15M @	750	(30)	15M@	900	(36)	10M@	600	(24)
	1.83	(6.0)	15M@	450	(18)	15M @	450	(18)	15M@	750	(30)	10M@	600	(24)	15M @	450	(18)	15M @	450	(18)	15M @	600	(24)	15M @	900	(36)
	2.13	(7.0)	15M@	300	(12)	15M@	450	(18)	15M@	600	(24)	15M@	750	(30)	15M @	300	(12)	15M @	450	(18)	15M@	450	(18)	15M@	600	(24)
	2.44	(8.0)	15M@	150	(6)	15M@	300	(12)	15M@	450	(18)	15M@	600	(24)	15M @	150	(6)	15M @	300	(12)	15M@	450	(18)	15M @	450	(18)
	2.74	(9.0)	15M@	150	(6)	15M@	300	(12)	15M@	450	(18)	15M@	450	(18)	15M @	150	(6)	15M @	300	(12)	15M@	300	(12)	15M@	300	(12)
$\begin{gathered} 3.05 \\ (10.0) \end{gathered}$	1.22	(4.0)	15M@	600	(24)	10M@	450	(18)	10M@	600	(24)	10M@	900	(36)	15M@	600	(24)	15M @	750	(30)	15M@	900	(36)	10M@	900	(36)
	1.53	(5.0)	15M@	450	(18)	15M @	600	(24)	10M@	450	(18)	10M@	750	(30)	15M @	450	(18)	15M @	600	(24)	15M@	900	(36)	10M @	600	(24)
	1.83	(6.0)	15M@	450	(18)	15M @	450	(18)	15M@	750	(30)	15M@	900	(36)	15M @	300	(12)	15M @	450	(18)	15M @	600	(24)	15M @	900	(36)
	2.13	(7.0)	15M @	300	(12)	15M @	450	(18)	15M@	600	(24)	15M@	750	(30)	15M @	150	(6)	15M @	300	(12)	15M@	450	(18)	15M@	600	(24)
	2.44	(8.0)	15M@	150	(6)	15M@	300	(12)	15M@	450	(18)	15M@	600	(24)	15M @	150	(6)	15M @	300	(12)	15M@	300	(12)	15M@	450	(18)
	2.74	(9.0)	15M@	150	(6)	15M@	150	(6)	15M@	300	(12)	15M@	450	(18)	15M @	150	(6)	15M @	150	(6)	15M@	300	(12)	15M@	300	(12)
	3.05	(10.0)	15M@	150	(6)	15M@	150	(6)	15M@	300	(12)	15M@	300	(12)				15M @	150	(6)	15M@	300	(12)	15M@	300	(12)
$\begin{aligned} & 3.35 \\ & (11.0) \end{aligned}$	1.22	(4.0)	15M@	600	(24)	15M @	600	(24)	10M@	600	(24)	10M@	900	(36)	15M@	600	(24)	15M @	750	(30)	15M@	900	(36)	10M@	750	(30)
	1.53	(5.0)	15M@	450	(18)	15M@	600	(24)	15M @	900	(36)	10M@	600	(24)	15M @	450	(18)	15M @	600	(24)	15M@	750	(30)	10M @	600	(24)
	1.83	(6.0)	15M@	450	(18)	15M@	450	(18)	15M@	750	(30)	15M@	900	(36)	15M@	300	(12)	15M@	450	(18)	15M@	600	(24)	15M@	750	(30)
	2.13	(7.0)	15M@	300	(12)	15M@	450	(18)	15M@	450	(18)	15M@	750	(30)	15M @	150	(6)	15M@	300	(12)	15M@	450	(18)	15M@	600	(24)
	2.44	(8.0)	15M@	150	(6)	15M@	300	(12)	15M@	450	(18)	15M@	450	(18)	15M@	150	(6)	15M@	300	(12)	15 M @	300	(12)	15M@	450	(18)
	2.74	(9.0)	15M@	150	(6)	15M@	150	(6)	15M@	300	(12)	15M@	450	(18)				15M @	150	(6)	15M@	300	(12)	15M@	300	(12)
	3.05	(10.0)				15M @	150	(6)	15M@	300	(12)	15M@	300	(12)				15M@	150	(6)	15M@	150	(6)	15M@	300	(12)
	3.35	(11.0)		-		15M @	150	(6)	15M@	150	(6)	15M@	300	(12)							15M@	150	(6)	15M@	300	(12)
$\begin{gathered} 3.66 \\ (12.0) \end{gathered}$	t.22	(4.0)	15M@	600	(24)	15M@	600	(24)	10M@	600	(24)	10M@	900	(36)	15M@	450	(18)	15M@	750	(30)	15M @	900	(36)	10M@	750	(30)
	1.53	(5.0)	15M@	450	(18)	15M@	450	(18)	15M@	750	(30)	10M@	600	(24)	15M @	450	(18)	15 M @	450	(18)	15M@	750	(30)	15M @	900	(36)
	1.83	(6.0)	15M@	300	(12)	15M@	450	(18)	15M@	600	(24)	15M@	900	(36)	15M@	300	(12)	15M@	450	(18)	15M@	600	(24)	15M@	750	(30)
	2.13	(7.0)	15M@	150	(6)	15M @	300	(12)	15M@	450	(18)	15M@	600	(24)	15M @	150	(6)	15M@	300	(12)	15M@	450	(18)	15M @	450	(18)
	2.44	(8.0)	15M@	150	(6)	15M @	300	(12)	15M @	450	(18)	15M @	450	(18)	15M @	150	(6)	15M@	300	(12)	15M @	300	(12)	15M @	450	(18)
	2.74	(9.0)	15M@	150	(6)	15M@	150	(6)	15M@	300	(12)	15M@	450	(18)				15M @	150	(6)	15M@	300	(12)	15M@	300	(12)
	3.05	(10.0)				15M @	150	(6)	15M@	300	(12)	15M@	300	(12)							15M@	150	(6)	15M@	300	(12)
	3.35	(11.0)							15M@	150	(6)	15M@	300	(12)							15M@	150	(6)	15M@	150	(6)
	3.66	(12.0)							15M@	150	(6)	15M@	150	(6)							15M@	150	(6)	15M@	150	(6)
Horizontal Reinforcement	$\begin{array}{r} \hline \text { Block } \\ 12^{\prime \prime} \text { a } \\ \hline \end{array}$	$\begin{aligned} & \text { teight of } \\ & \text { nd } 18^{\prime \prime} \end{aligned}$	10M @	900	(36)																					
	$\begin{gathered} \text { Block } \\ \text { of } \end{gathered}$	Height   16"	10M@	800	(32)	10M@	800	(32)	10M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)									

## NOTES

1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20 MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.
2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of $480 \mathrm{~kg} / \mathrm{m} 3$.
3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table B.1.2- Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, Sa(0.2) $\leq 0.25$ and Hourly Wind Pressure, $q_{1 / 50} \leq 1.05 \mathrm{kPa}$, for ICF Walls with 8"Tie Spacing

$\begin{array}{\|c} \text { Wall Height } \\ m_{\text {(ft) }} \\ \text { ( } \end{array}$	Backfill Height m (ft)		Vertical Steel (Size and Spacing)																							
			$480 \mathrm{~kg} / \mathrm{m} 3$ (30 pcf) $\quad$ Backfill Equivale																							
			150 mm (6") Wall			200 mm (8") Wall			250 mm (10") Wall			300 mm (12") Wall			150 mm (6") Wall			200 mm (8") Wall			250 mm (10") Wall			300 mm (12") Wall		
$\begin{aligned} & 2.44 \\ & (8.0) \end{aligned}$	1.22	(4.0)	10M @	400	(16)	10M @	600	(24)	10M @	800	(32)	10M @	800	(32)	10M @	400	(16)	10M@	600	(24)	10M @	800	(32)	10M @	800	(32)
	1.53	(5.0)	10M @	400	(16)	10M @	600	(24)	10M @	800	(32)	10M@	800	(32)	15M @	600	(24)	10M@	400	(16)	10M@	800	(32)	10M@	800	(32)
	1.83	(6.0)	15M @	600	(24)	10M @	400	(16)	10M @	600	(24)	10M @	800	(32)	15M @	400	(16)	15M @	600	(24)	10M@	400	(16)	10M@	800	(32)
	2.13	(7.0)	15M @	400	(16)	15M @	600	(24)	10M @	400	(16)	10M@	600	(24)	15M @	400	(16)	15M@	600	(24)	10M@	400	(16)	10M@	600	(24)
	2.44	(8.0)	15M @	400	(16)	15M @	400	(16)	10M @	400	(16)	10M @	400	(16)	15M @	400	(16)	15M @	400	(16)	15M@	600	(24)	15M @	800	(32)
$\begin{aligned} & 2.74 \\ & (9.0) \end{aligned}$	1.22	(4.0)	15M @	800	(32)	10M @	600	(24)	10M@	800	(32)	10M@	800	(32)	15M @	800	(32)	10M@	600	(24)	10M@	800	(32)	10M@	800	(32)
	1.53	(5.0)	15M @	800	(32)	10M @	400	(16)	10M @	800	(32)	10M @	800	(32)	15M @	600	(24)	10M @	400	(16)	10M@	600	(24)	10M @	800	(32)
	1.83	(6.0)	15M @	400	(16)	15M @	800	(32)	10M @	600	(24)	10M @	800	(32)	15M @	400	(16)	15M @	600	(24)	10M @	400	(16)	10 M @	600	(24)
	2.13	(7.0)	15M @	400	(16)	15M @	600	(24)	10M @	400	(16)	10M@	600	(24)	15M @	400	(16)	15M@	400	(16)	15M@	600	(24)	15M @	800	(32)
	2.44	(8.0)	15M @	400	(16)	15M @	400	(16)	15M @	600	(24)	15M @	800	(32)	15M@	200	(8)	15M@	400	(16)	15M@	400	(16)	15M @	600	(24)
	2.74	(9.0)	15M @	200	(8)	15M @	400	(16)	15M @	600	(24)	15M @	600	(24)	15M @	200	(8)	15M @	400	(16)	15M@	400	(16)	15M @	600	(24)
$\begin{gathered} 3.05 \\ (10.0) \end{gathered}$	1.22	(4.0)	15M @	800	(32)	10 M @	600	(24)	10M @	800	(32)	10M@	800	(32)	15M @	800	(32)	10M@	400	(16)	10M@	800	(32)	10M @	800	(32)
	1.53	(5.0)	15M @	600	(24)	15M @	800	(32)	10M @	600	(24)	10M @	800	(32)	15M @	600	(24)	15M @	800	(32)	10M@	600	(24)	10M @	800	(32)
	1.83	(6.0)	15M @	400	(16)	15M @	600	(24)	10M@	400	(16)	10M @	600	(24)	15M @	400	(16)	15M@	600	(24)	10M@	400	(16)	10M @	600	(24)
	2.13	(7.0)	15M @	400	(16)	15M @	400	(16)	10M @	400	(16)	15M @	800	(32)	15M @	400	(16)	15M @	400	(16)	15M @	600	(24)	15M @	800	(32)
	2.44	(8.0)	15M @	400	(16)	15M @	400	(16)	15M @	600	(24)	15M @	800	(32)	15M @	200	(8)	15M @	400	(16)	15M @	400	(16)	15M @	600	(24)
	2.74	(9.0)	15M @	200	(8)	15M @	400	(16)	15M @	400	(16)	15M@	600	(24)	15M @	200	(8)	15M@	400	(16)	15M@	400	(16)	15M@	400	(16)
	3.05	(10.0)	15M @	200	(8)	15M @	400	(16)	15M @	400	(16)	15M@	400	(16)	15M @	200	(8)	15M@	200	(8)	15M@	400	(16)	15M@	400	(16)
$\begin{aligned} & 3.35 \\ & (11.0) \end{aligned}$	1.22	(4.0)	15M @	800	(32)	10M @	400	(16)	10M @	800	(32)	10M@	900	(36)	15M @	600	(24)	10M@	400	(16)	10M@	600	(24)	10M@	800	(32)
	1.53	(5.0)	15M @	600	(24)	15M @	800	(32)	10M @	600	(24)	10M@	900	(36)	15M @	400	(16)	15M @	800	(32)	10M@	400	(16)	10M@	800	(32)
	1.83	(6.0)	15M @	400	(16)	15M @	600	(24)	10M @	400	(16)	10M@	600	(24)	15M @	400	(16)	15M @	600	(24)	10M@	400	(16)	10M@	600	(24)
	2.13	(7.0)	15M @	400	(16)	15M @	400	(16)	15M @	600	(24)	15M @	800	(32)	15M @	400	(16)	15M @	400	(16)	15M @	600	(24)	15M @	800	(32)
	2.44	(8.0)	15M @	200	(8)	15M @	400	(16)	15M @	400	(16)	15M@	600	(24)	15M@	200	(8)	15M@	400	(16)	15M @	400	(16)	15M@	600	(24)
	2.74	(9.0)	15M @	200	(8)	15M @	400	(16)	15M@	400	(16)	15M@	600	(24)	15M@	200	(8)	15M@	300	(12)	15M@	400	(16)	15M@	400	(16)
	3.05	(10.0)	15M @	200	(8)	15M @	200	(8)	15M @	400	(16)	15M@	400	(16)				15M @	200	(8)	15M @	400	(16)	15M@	400	(16)
	3.35	(11.0)				15M @	200	(8)	15M@	400	(16)	15M@	400	(16)			-	15M @	200	(8)	15M@	200	(8)	15M @	400	(16)
	1.22	(4.0)	15M @	600	(24)	10M @	400	(16)	10M @	800	(32)	10M @	800	(32)	15M@	600	(24)	15M@	800	(32)	10M @	600	(24)	10 M @	800	(32)
	1.53	(5.0)	15M @	600	(24)	15M @	800	(32)	10M @	600	(24)	10M @	800	(32)	15M @	400	(16)	15M @	600	(24)	10M@	400	(16)	10M @	600	(24)
	1.83	(6.0)	15M @	400	(16)	15M @	600	(24)	10M @	400	(16)	10M@	600	(24)	15M @	400	(16)	15M@	600	(24)	15M@	800	(32)	15M@	800	(32)
	2.13	(7.0)	15M @	400	(16)	15M @	400	(16)	15M @	600	(24)	15M@	800	(32)	15M @	200	(8)	15M@	400	(16)	15M@	600	(24)	15M@	600	(24)
	2.44	(8.0)	15M @	200	(8)	15M @	400	(16)	15M @	400	(16)	15M @	600	(24)	15M @	200	(8)	15M @	400	(16)	15M@	400	(16)	15M @	400	(16)
	2.74	(9.0)	15M @	200	(8)	15M @	200	(8)	15M @	400	(16)	15M@	400	(16)	15M@	200	(8)	15M@	200	(8)	15M@	400	(16)	15M@	400	(16)
	3.05	(10.0)	15M @	200	(8)	15M @	200	(8)	15M @	400	(16)	15M@	400	(16)				15M@	200	(8)	15M@	200	(8)	15M@	400	(16)
	3.35	(11.0)				15M @	200	(8)	15M @	200	(8)	15M@	400	(16)				15M@	200	(8)	15M@	200	(8)	15M@	400	(16)
	3.66	(12.0)				15M @	200	(8)	15M @	200	(8)	15M@	400	(16)							15M@	200	(8)	15M@	200	(8)
Horizontal Reinforcement	$\begin{array}{r} \hline \text { Block } \\ 12{ }^{\prime \prime} \mathrm{a} \\ \hline \end{array}$	$\begin{aligned} & \text { eight of } \\ & \text { id } 18^{\prime \prime} \\ & \hline \end{aligned}$	10M @	900	(36)																					
	$\begin{array}{r} \text { Bloa } \\ \begin{array}{c} \text { Bock } \\ \text { of } \end{array} \\ \hline \end{array}$	Height   $6^{\prime \prime}$	10M @	800	(32)	10M @	800	(32)	10M @	800	(32)	10M@	800	(32)												

## NOTES

[^3]
## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table B.1.2. Continued - Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $\mathrm{Sa}(\mathbf{0 . 2}) \leq 0.25$ and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$, for ICF Walls with 8"Tie Spacing

$\begin{array}{\|c} \text { Wall Height } \\ m \\ (\mathrm{ft}) \end{array}$	Backfill Height m (ft)		Vertical Steel (Size and Spacing)																							
			$960 \mathrm{~kg} / \mathrm{m} 3(60 \mathrm{pcf}) \quad$ Backfill Equivale												nt Fluid Density $1200 \mathrm{~kg} / \mathrm{m} 3$ (75 pcf)											
			150 mm (6") Wall			200 mm (8") Wall			250 mm ( 10 ") Wall			300 mm (12") Wall			150 mm (6") Wall			200 mm ( $8^{\prime \prime}$ ) Wall			250 mm (10") Wall			300 mm (12") Wall		
$\begin{aligned} & 2.44 \\ & (8.0) \end{aligned}$	1.22	(4.0)	15M@	600	(24)	10M @	400	(16)	10M @	800	(32)	10M@	800	(32)	15M @	600	(24)	10M @	400	(16)	10M@	800	(32)	10M @	800	(32)
	1.53	(5.0)	15M@	600	(24)	10M @	400	(16)	10M@	600	(24)	10M@	800	(32)	15M@	400	(16)	15M @	800	(32)	15M @	800	(32)	10M @	800	(32)
	1.83	(6.0)	15M@	400	(16)	15M @	600	(24)	10M@	400	(16)	10M@	600	(24)	15M @	400	(16)	15M @	400	(16)	15M@	800	(32)	15M @	800	(32)
	2.13	(7.0)	15M@	400	(16)	15M @	400	(16)	15M@	600	(24)	15M@	800	(32)	15M@	200	(8)	15M @	400	(16)	15M@	600	(24)	15M @	600	(24)
	2.44	(8.0)	15M @	200	(8)	15M @	400	(16)	15M @	400	(16)	15M @	600	(24)	15M @	200	(8)	15M @	400	(16)	15M@	400	(16)	15M @	600	(24)
$\begin{aligned} & 2.74 \\ & (9.0) \end{aligned}$	1.22	(4.0)	15M@	600	(24)	10M@	400	(16)	10M@	600	(24)	10M@	800	(32)	15M@	600	(24)	15M@	800	(32)	10M@	400	(16)	10M @	800	(32)
	1.53	(5.0)	15M@	400	(16)	15M @	600	(24)	15M@	600	(24)	10M@	800	(32)	15M@	400	(16)	15M @	600	(24)	15M@	800	(32)	10M @	600	(24)
	1.83	(6.0)	15M@	400	(16)	15M @	400	(16)	15M@	800	(32)	10M@	600	(24)	15M @	400	(16)	15M @	400	(16)	15M@	600	(24)	15M @	800	(32)
	2.13	(7.0)	15M@	400	(16)	15M @	400	(16)	15M@	600	(24)	15M@	800	(32)	15M @	200	(8)	15M@	400	(16)	15M@	400	(16)	15M @	600	(24)
	2.44	(8.0)	15M@	200	(8)	15M@	400	(16)	15M@	400	(16)	15M@	600	(24)	15M@	200	(8)	15M@	400	(16)	15M@	400	(16)	15M @	400	(16)
	2.74	(9.0)	15M@	200	(8)	15M @	400	(16)	15M@	400	(16)	15M@	400	(16)				15M @	200	(8)	15M@	400	(16)	15M @	400	(16)
$\begin{gathered} 3.05 \\ (10.0) \end{gathered}$	1.22	(4.0)	15M@	600	(24)	10M@	400	(16)	10M@	600	(24)	10M@	800	(32)	15M@	600	(24)	15M @	200	(8)	15M@	800	(32)	10M @	800	(32)
	1.53	(5.0)	15M@	400	(16)	15M@	600	(24)	10M@	400	(16)	10M@	600	(24)	15M @	400	(16)	15M @	600	(24)	15M@	800	(32)	10M @	600	(24)
	1.83	(6.0)	15M@	400	(16)	15M @	400	(16)	15M@	800	(32)	15M@	800	(32)	15M @	400	(16)	15M @	400	(16)	15M@	600	(24)	15M @	800	(32)
	2.13	(7.0)	15M @	200	(8)	15M @	400	(16)	15M@	600	(24)	15M @	600	(24)	15M @	200	(8)	15M @	400	(16)	15M @	400	(16)	15M @	600	(24)
	2.44	(8.0)	15M@	200	(8)	15M@	400	(16)	15M@	400	(16)	15M@	400	(16)	15M@	200	(8)	15M @	200	(8)	15M@	400	(16)	15M @	400	(16)
	2.74	(9.0)	15M@	200	(8)	15M@	200	(8)	15M@	400	(16)	15M@	400	(16)				15M@	200	(8)	15M@	400	(16)	15M @	400	(16)
	3.05	(10.0)				15M@	200	(8)	15M@	400	(16)	15M@	400	(16)				15M@	200	(8)	15M@	200	(8)	15M @	400	(16)
$\begin{aligned} & 3.35 \\ & (11.0) \end{aligned}$	1.22	(4.0)	15M@	600	(24)	15M @	600	(24)	10M@	600	(24)	10M@	800	(32)	15M@	600	(24)	15M @	800	(32)	15M@	800	(32)	10M @	800	(32)
	1.53	(5.0)	15M@	400	(16)	15M @	600	(24)	15M@	800	(32)	10M@	600	(24)	15M @	400	(16)	15M @	600	(24)	15M@	800	(32)	10M @	600	(24)
	1.83	(6.0)	15M@	400	(16)	15M @	400	(16)	15M@	600	(24)	15M@	800	(32)	15M @	200	(8)	15M @	400	(16)	15M@	600	(24)	15M @	800	(32)
	2.13	(7.0)	15M@	200	(8)	15M @	400	(16)	15M@	400	(16)	15M@	600	(24)	15M @	200	(8)	15M@	400	(16)	15M@	400	(16)	15M @	600	(24)
	2.44	(8.0)	15M@	200	(8)	15M @	200	(8)	15M@	400	(16)	15M@	400	(16)				15M@	200	(8)	15M@	400	(16)	15M @	400	(16)
	2.74	(9.0)				15M @	200	(8)	15M@	400	(16)	15M@	400	(16)				15M @	200	(8)	15M@	200	(8)	15M @	400	(16)
	3.05	(10.0)				15M @	200	(8)	15M@	200	(8)	15M@	400	(16)				15M @	200	(8)	15M@	200	(8)	15M @	200	(8)
	3.35	(11.0)		-		15M @	200	(8)	15M@	200	(8)	15M@	200	(8)							15M@	200	(8)	15M @	200	(8)
$\begin{gathered} 3.66 \\ (12.0) \end{gathered}$	1.22	(4.0)	15M@	600	(24)	15M@	600	(24)	10M@	600	(24)	10M@	800	(32)	15M@	400	(16)	15M@	600	(24)	15M @	800	(32)	$10 \mathrm{M@}$	800	(32)
	1.53	(5.0)	15M@	400	(16)	15M@	400	(16)	15M@	800	(32)	10M@	600	(24)	15M@	400	(16)	15M @	400	(16)	15M@	800	(32)	15M @	800	(32)
	1.83	(6.0)	15M@	400	(16)	15M@	400	(16)	15M@	600	(24)	15M@	800	(32)	15M@	200	(8)	15M@	400	(16)	15M@	600	(24)	15M @	800	(32)
	2.13	(7.0)	15M@	200	(8)	15M @	400	(16)	15M@	400	(16)	15M@	600	(24)	15M@	200	(8)	15M@	400	(16)	15M@	400	(16)	15M @	400	(16)
	2.44	(8.0)	15M@	200	(8)	15M @	200	(8)	15M@	400	(16)	15M @	400	(16)				15M @	200	(8)	15M@	400	(16)	15M @	400	(16)
	2.74	(9.0)				15M @	200	(8)	15M@	200	(8)	15M@	400	(16)				15M @	200	(8)	15M@	200	(8)	15M @	400	(16)
	3.05	(10.0)				15M @	200	(8)	15M@	200	(8)	15M@	400	(16)							15M@	200	(8)	15M @	200	(8)
	3.35	(11.0)							15M@	200	(8)	15M@	200	(8)							15M@	200	(8)	15M @	200	(8)
	3.66	(12.0)							15M@	200	(8)	15M@	200	(8)										15M @	200	(8)
Horizontal Reinforcement	$\begin{gathered} \hline \text { Block } \\ 12^{\prime \prime} \text { a } \\ \hline \end{gathered}$	leight of	10M @	900	(36)																					
	$\begin{gathered} \text { Block } \\ \text { of } \end{gathered}$	$\begin{aligned} & \text { Height } \\ & 16^{\prime \prime} \\ & \hline \end{aligned}$	10M @	800	(32)	10M@	800	(32)	10M @	800	(32)	10 M @	800	(32)	10M @	800	(32)									

## NOTES

1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20 MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.
2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of $480 \mathrm{~kg} / \mathrm{m} 3$.
3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table B.2.1. - Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.25<\mathrm{Sa}(0.2) \leq 0.70$ and Hourly Wind Pressure, $q_{1 / 50} \leq 1.05 k P a$, for ICF Walls with 6 "Tie Spacing

Wall Height   m   (ft)	Backfill Height m (ft)		Vertical Steel (Size and Spacing)																							
			$480 \mathrm{~kg} / \mathrm{m} 3$ (30 pcf) $\quad$ Backfill Equivale												( $720 \mathrm{~kg} / \mathrm{m3}$ (45 pcf)											
			150 mm (6") Wall			200 mm ( $8^{\prime \prime}$ ) Wall			250 mm (10)" Wall			300 mm (12") Wall			150 mm ( (6") Wall			200 mm ( $8^{\prime \prime}$ ) Wall			250 mm ( 10 ") Wall			300 mm (12") Wall		
$\begin{aligned} & 2.44 \\ & (8.0) \end{aligned}$	1.22	(4.0)	10M@	450	(18)	10M @	600	(24)	10M@	450	(18)	10M@	450	(18)	15M@	450	(18)	10M @	450	(18)	10M @	450	(18)	10M@	450	(18)
	1.53	(5.0)	15M @	600	(24)	15M @	600	(24)	10M @	450	(18)	10M@	450	(18)	15M@	450	(18)	15M @	600	(24)	10M @	450	(18)	10M@	450	(18)
	1.83	(6.0)	15M@	450	(18)	15M @	600	(24)	15M@	600	(24)	15M@	600	(24)	15M@	450	(18)	15M @	450	(18)	15M @	600	(24)	15M @	600	(24)
	2.13	(7.0)	15M @	300	(12)	15M @	450	(18)	15M@	600	(24)	15M@	600	(24)	15M@	300	(12)	15M@	450	(18)	15M @	450	(18)	15M@	600	(24)
	2.44	(8.0)	15M @	300	(12)	15M @	450	(18)	15M @	600	(24)	15M @	600	(24)	15M @	150	(6)	15M @	450	(18)	15M @	450	(18)	15M @	600	(24)
$\begin{aligned} & 2.74 \\ & (9.0) \end{aligned}$	1.22	(4.0)	15M @	600	(24)	10M @	450	(18)	10M@	450	(18)	10M@	450	(18)	15M @	600	(24)	10M @	450	(18)	10M @	450	(18)	10M@	450	(18)
	1.53	(5.0)	15M @	450	(18)	15M @	600	(24)	10M @	450	(18)	10M @	450	(18)	15M @	450	(18)	15M @	600	(24)	15M @	600	(24)	10M@	450	(18)
	1.83	(6.0)	15M @	450	(18)	15M @	600	(24)	15M @	600	(24)	15M@	600	(24)	15M @	300	(12)	15M @	450	(18)	15M @	600	(24)	15M @	600	(24)
	2.13	(7.0)	15M@	300	(12)	15M @	450	(18)	15M@	600	(24)	15M@	600	(24)	15M @	300	(12)	15M @	450	(18)	15M @	450	(18)	15M@	600	(24)
	2.44	(8.0)	15M @	150	(6)	15M @	300	(12)	15M @	450	(18)	15M@	600	(24)	15M @	150	(6)	15M @	300	(12)	15M @	450	(18)	15M@	450	(18)
	2.74	(9.0)	15M @	150	(6)	15M @	300	(12)	15M @	450	(18)	15M @	450	(18)	15M @	150	(6)	15M @	300	(12)	15M @	450	(18)	15M @	450	(18)
$\begin{gathered} 3.05 \\ (10.0) \end{gathered}$	1.22	(4.0)	15M@	600	(24)	10M @	450	(18)	10M@	450	(18)	10M@	450	(18)	15M@	600	(24)	10M @	450	(18)	10M @	450	(18)	10M@	450	(18)
	1.53	(5.0)	15M @	450	(18)	15M @	600	(24)	10M@	450	(18)	10M@	450	(18)	15M@	450	(18)	15M @	600	(24)	10M @	450	(18)	10M@	450	(18)
	1.83	(6.0)	15M @	300	(12)	15M @	450	(18)	15M @	600	(24)	15M@	600	(24)	15M @	300	(12)	15M @	450	(18)	15M @	600	(24)	15M @	600	(24)
	2.13	(7.0)	15M@	300	(12)	15M@	450	(18)	15M@	450	(18)	15M@	600	(24)	15M@	150	(6)	15M@	300	(12)	15M @	450	(18)	15M@	600	(24)
	2.44	(8.0)	15M@	150	(6)	15M@	300	(12)	15M@	450	(18)	15M@	450	(18)	15M @	150	(6)	15M@	300	(12)	15M @	450	(18)	15M@	450	(18)
	2.74	(9.0)	15M @	150	(6)	15M @	300	(12)	15M @	300	(12)	15M@	450	(18)	15M @	150	(6)	15M @	150	(6)	15M @	300	(12)	15M @	300	(12)
	3.05	(10.0)	15M @	150	(6)				15M @	300	(12)	15M @	300	(12)				15M @	150	(6)	15M @	300	(12)	15M@	300	(12)
$\begin{aligned} & 3.35 \\ & (11.0) \end{aligned}$	1.22	(4.0)	15M@	600	(24)	10M @	450	(18)	10M@	450	(18)	10M@	450	(18)	15M@	600	(24)	10M @	450	(18)	10M @	450	(18)	10M@	450	(18)
	1.53	(5.0)	15M @	450	(18)	15M @	600	(24)	10M @	450	(18)	10M @	450	(18)	15M@	450	(18)	15M @	600	(24)	10M @	450	(18)	10M @	450	(18)
	1.83	(6.0)	15M @	300	(12)	15M @	450	(18)	15M @	600	(24)	15M @	600	(24)	15M @	300	(12)	15M @	450	(18)	15M @	600	(24)	15M @	600	(24)
	2.13	(7.0)	15M@	150	(6)	15M @	450	(18)	15M @	450	(18)	15M@	600	(24)	15M@	150	(6)	15M@	300	(12)	15M @	450	(18)	15M@	450	(18)
	2.44	(8.0)	15M@	150	(6)	15M @	300	(12)	15M@	450	(18)	15M@	450	(18)	15M@	150	(6)	15M @	300	(12)	15M @	300	(12)	15M @	450	(18)
	2.74	(9.0)	15M@	150	(6)	15M@	150	(6)	15M@	300	(12)	15M@	300	(12)				15M @	150	(6)	15M @	300	(12)	15M@	300	(12)
	3.05	(10.0)				15M @	150	(6)	15M@	300	(12)	15M@	300	(12)				15M @	150	(6)	15M @	150	(6)	15M@	300	(12)
	3.35	(11.0)		-		15M @	150	(6)	15M@	150	(6)	15M@	300	(12)		-	,	15M@	150	(6)	15M@	150	(6)	15M@	300	(12)
$\begin{gathered} 3.66 \\ (12.0) \end{gathered}$	1.22	(4.0)	15M @	600	(24)	10M@	450	(18)	10M@	450	(18)	10M@	450	(18)	15M@	600	(24)	15M@	600	(24)	10M @	450	(18)	10 M @	450	(18)
	1.53	(5.0)	15M@	450	(18)	15M@	600	(24)	10M@	450	(18)	10M@	450	(18)	15M@	450	(18)	15M @	600	(24)	15M @	600	(24)	10M@	450	(18)
	1.83	(6.0)	15M@	300	(12)	15M @	450	(18)	15M @	600	(24)	15M @	600	(24)	15M@	300	(12)	15M @	450	(18)	15M @	450	(18)	15M @	600	(24)
	2.13	(7.0)	15M@	150	(6)	15M@	300	(12)	15M @	450	(18)	15M@	600	(24)	15M@	150	(6)	15M@	300	(12)	15M @	450	(18)	15M@	450	(18)
	2.44	(8.0)	15M @	150	(6)	15M @	300	(12)	15M@	300	(12)	15M@	450	(18)	15M@	150	(6)	15M@	150	(6)	15M@	300	(12)	15M@	450	(18)
	2.74	(9.0)				15M @	150	(6)	15M @	300	(12)	15M@	300	(12)				15M @	150	(6)	15M @	300	(12)	15M @	300	(12)
	3.05	(10.0)				15M @	150	(6)	15M @	150	(6)	15M@	300	(12)				15M @	150	(6)	15M @	150	(6)	15M@	300	(12)
	3.35	(11.0)				15M @	150	(6)	15M@	150	(6)	15M@	300	(12)							15M @	150	(6)	15M@	150	(6)
	3.66	(12.0)							15M@	150	(6)	15M@	150	(6)							15M @	150	(6)	15M@	150	(6)
Horizontal Reinforcement	$\begin{array}{\|c\|} \hline \text { Block } \\ 12 " \mathrm{ar} \\ \hline \end{array}$	Height of nd $18^{\prime \prime}$	15M @	450	(18)																					
	$\begin{array}{\|c\|} \hline \text { Block } \\ \text { of } \end{array}$	$\begin{aligned} & \text { Height } \\ & 16^{\prime \prime} \end{aligned}$	15M @	400	(16)																					

## NOTES

[^4]
## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table B.2.1. Continued - Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.25<\mathrm{Sa}(0.2)$ $\leq 0.70$ and Hourly Wind Pressure, $q_{1 / 50} \leq 1.05 \mathrm{kPa}$, for ICF Walls with 6 " Tie Spacing

Wall Height   $m_{(\mathrm{ft})}$	Backfill Height m (ft)		Vertical Steel (Size and Spacing)																							
			$960 \mathrm{~kg} / \mathrm{m} 3(60 \mathrm{pcf}) \quad$ Backfill Equivale																							
			150 mm (6") Wall			200 mm ( $8^{\prime \prime}$ ) Wall			250 mm (10") Wall			300 mm (12") Wall			150 mm (6") Wall			200 mm (8") Wall			250 mm (10") Wall			300 mm (12") Wall		
$\begin{aligned} & 2.44 \\ & (8.0) \end{aligned}$	1.22	(4.0)	15M @	450	(18)	10M @	450	(18)	10M @	450	(18)	10M@	450	(18)	15M @	450	(18)	10M@	450	(18)	10M@	450	(18)	10M@	450	(18)
	1.53	(5.0)	15M@	450	(18)	15M @	600	(24)	10M @	450	(18)	10M@	450	(18)	15M @	450	(18)	15M@	600	(24)	10M@	450	(18)	10M@	450	(18)
	1.83	(6.0)	15M@	300	(12)	15M @	450	(18)	15M@	600	(24)	10M@	450	(18)	15M @	300	(12)	15M@	450	(18)	15M@	600	(24)	15M@	600	(24)
	2.13	(7.0)	15M @	300	(12)	15M @	450	(18)	15M @	450	(18)	15M @	600	(24)	15M @	150	(6)	15M @	300	(12)	15M @	450	(18)	15M @	600	(24)
	2.44	(8.0)	15M @	150	(6)	15M @	300	(12)	15M @	450	(18)	15M@	600	(24)	15M @	150	(6)	15M@	300	(12)	15M@	450	(18)	15M@	450	(18)
$\begin{aligned} & 2.74 \\ & (9.0) \end{aligned}$	1.22	(4.0)	15M @	600	(24)	15M @	600	(24)	10M @	450	(18)	10M@	450	(18)	15M @	600	(24)	15M@	600	(24)	10M@	450	(18)	10M@	450	(18)
	1.53	(5.0)	15M@	450	(18)	15M @	600	(24)	10M @	450	(18)	10M@	450	(18)	15M @	450	(18)	15M@	600	(24)	10M@	450	(18)	10M@	450	(18)
	1.83	(6.0)	15M@	300	(12)	15M @	450	(18)	15M @	600	(24)	15M@	600	(24)	15M @	300	(12)	15M@	450	(18)	15M@	450	(18)	15M@	600	(24)
	2.13	(7.0)	15M@	150	(6)	15M @	300	(12)	15M@	450	(18)	15M@	600	(24)	15M @	150	(6)	15M@	300	(12)	15M@	450	(18)	15M@	450	(18)
	2.44	(8.0)	15M@	150	(6)	15M @	300	(12)	15M @	450	(18)	15M@	450	(18)	15M @	150	(6)	15M@	300	(12)	15M@	300	(12)	15M@	300	(12)
	2.74	(9.0)	15M @	150	(6)	15M @	300	(12)	15M @	300	(12)	15M @	300	(12)	15M @	150	(6)	15M@	150	(6)	15M@	300	(12)	15M@	300	(12)
$\begin{gathered} 3.05 \\ (10.0) \end{gathered}$	1.22	(4.0)	15M@	600	(24)	15M @	600	(24)	10M @	450	(18)	10M@	450	(18)	15M @	600	(24)	15M@	600	(24)	10M@	450	(18)	10M@	450	(18)
	1.53	(5.0)	15M@	450	(18)	15M @	600	(24)	10M @	450	(18)	10M@	450	(18)	15M @	450	(18)	15M @	600	(24)	15M@	600	(24)	10M @	450	(18)
	1.83	(6.0)	15M @	300	(12)	15M @	450	(18)	15M @	600	(24)	15M @	600	(24)	15M @	300	(12)	15M @	450	(18)	15M @	450	(18)	15M @	600	(24)
	2.13	(7.0)	15M @	150	(6)	15M @	300	(12)	15M@	450	(18)	15M @	450	(18)	15M @	150	(6)	15M @	300	(12)	15M@	450	(18)	15M @	450	(18)
	2.44	(8.0)	15M @	150	(6)	15M @	300	(12)	15M @	300	(12)	15M@	300	(12)	15M @	150	(6)	15M@	150	(6)	15M@	300	(12)	15M@	300	(12)
	2.74	(9.0)				15M @	150	(6)	15M @	300	(12)	15M@	300	(12)				15M@	150	(6)	15M@	300	(12)	15M@	300	(12)
	3.05	(10.0)				15M @	150	(6)	15M @	150	(6)	15M@	300	(12)				15M@	150	(6)	15M@	150	(6)	15M@	300	(12)
$\begin{aligned} & 3.35 \\ & (11.0) \end{aligned}$	1.22	(4.0)	15M@	600	(24)	15M @	600	(24)	10M @	450	(18)	10M@	450	(18)	15M @	600	(24)	15M @	600	(24)	10M@	450	(18)	10M@	450	(18)
	1.53	(5.0)	15M @	450	(18)	15M @	600	(24)	10M @	450	(18)	10M @	450	(18)	15M @	450	(18)	15M@	600	(24)	15M @	600	(24)	10M@	450	(18)
	1.83	(6.0)	15M @	300	(12)	15M @	450	(18)	15M @	450	(18)	15M@	600	(24)	15M @	150	(6)	15M@	450	(18)	15M@	450	(18)	15M@	600	(24)
	2.13	(7.0)	15M@	150	(6)	15M @	300	(12)	15M@	450	(18)	15M@	450	(18)	15M @	150	(6)	15M@	300	(12)	15M@	450	(18)	15M@	450	(18)
	2.44	(8.0)	15M @	150	(6)	15M @	150	(6)	15M @	300	(12)	15M@	300	(12)				15M@	150	(6)	15M@	300	(12)	15M@	300	(12)
	2.74	(9.0)				15M @	150	(6)	15M @	300	(12)	15M@	300	(12)				15M@	150	(6)	15M@	150	(6)	15M@	300	(12)
	3.05	(10.0)				15M @	150	(6)	15M @	150	(6)	15M@	300	(12)							15M@	150	(6)	15M@	300	(12)
	3.35	(11.0)							15M@	150	(6)	15M@	150	(6)							15M@	150	(6)	15M@	150	(6)
W/	1.22	(4.0)	15M@	600	(24)	15M@	600	(24)	10M@	450	(18)	10M@	450	(18)	15M@	450	(18)	15M@	600	(24)	10M@	450	(18)	10M@	450	(18)
	1.53	(5.0)	15M@	450	(18)	15M @	600	(24)	15M @	600	(24)	10M@	450	(18)	15M @	450	(18)	15M @	450	(18)	15M@	600	(24)	10M@	450	(18)
	1.83	(6.0)	15M @	150	(6)	15M @	450	(18)	15M @	450	(18)	15M @	600	(24)	15M @	150	(6)	15M@	300	(12)	15M @	450	(18)	15M @	600	(24)
	2.13	(7.0)	15M @	150	(6)	15M @	300	(12)	15M @	450	(18)	15M @	450	(18)	15M @	150	(6)	15M@	300	(12)	15M@	300	(12)	15M@	450	(18)
	2.44	(8.0)				15M @	150	(6)	15M @	300	(12)	15M@	300	(12)				15M@	150	(6)	15M@	300	(12)	15M@	300	(12)
	2.74	(9.0)				15M @	150	(6)	15M@	150	(6)	15M @	300	(12)				15M@	150	(6)	15M@	150	(6)	15M@	300	(12)
	3.05	(10.0)							15M@	150	(6)	15M@	150	(6)							15M@	150	(6)	15M@	150	(6)
	3.35	(11.0)							15M @	150	(6)	15M@	150	(6)							15M@	150	(6)	15M@	150	(6)
	3.66	(12.0)							15M @	150	(6)	15M @	150	(6)										15M@	150	(6)
Horizontal Reinforcement	$\begin{array}{r} \hline \text { Block } \\ 12{ }^{\prime \prime} \mathrm{a} \\ \hline \end{array}$	$\begin{aligned} & \text { leight of } \\ & \text { nd } 18 \text { " } \end{aligned}$	15M @	450	(18)																					
	$\begin{gathered} \text { Block } \\ \text { of } \end{gathered}$	$\begin{aligned} & \text { Height } \\ & 16^{\prime \prime \prime} \end{aligned}$	15M@	400	(16)	15M @	400	(16)	15M @	400	(16)	15M@	400	(16)	15M @	400	(16)									

## NOTES

1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20 MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.
2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of $480 \mathrm{~kg} / \mathrm{m} 3$.
3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.
4. Alternating horizontal bar spacing of $12^{\prime \prime}$ o.c. and $24^{\prime \prime}$ o.c. may be used to achieve an average spacing of $18^{\prime \prime}$ o.c. where $18^{\prime \prime}$ o.c. spacing is specified for horizontal bars, as shown in Detail A. 3 .

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table B.2.2. - Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.25<\mathrm{Sa}(0.2) \leq 0.70$ and Hourly Wind Pressure, $q_{1 / 50} \leq 1.05 k P a$, for ICF Walls with 8 "Tie Spacing

Wall Height   m   (ft)	Backfill Height m (ft)		Vertical Steel (Size and Spacing)																							
			$480 \mathrm{~kg} / \mathrm{m} 3$ ( 30 pcf ) Backfill Equivale												t Fluid Density $\quad 720 \mathrm{~kg} / \mathrm{m} 3$ (45 pcf)											
			150 mm (6") Wall			200 mm ( $8^{\prime \prime}$ ) Wall			250 mm (10") Wall			300 mm (12") Wall			150 mm (6") Wall			200 mm ( $8^{\prime \prime}$ ) Wall			250 mm ( 10 ") Wall			300 mm (12") Wall		
$\begin{aligned} & 2.44 \\ & (8.0) \end{aligned}$	1.22	(4.0)	10M @	400	(16)	10M @	600	(24)	10M@	400	(16)	10M@	400	(16)	15M @	400	(16)	10M @	400	(16)	10M @	400	(16)	10M @	400	(16)
	1.53	(5.0)	15M @	400	(16)	15M @	600	(24)	10M@	400	(16)	10M@	400	(16)	15M @	400	(16)	15M @	600	(24)	10M @	400	(16)	10M @	400	(16)
	1.83	(6.0)	15M@	400	(16)	15M @	600	(24)	15M@	600	(24)	15M@	600	(24)	15M@	400	(16)	15M @	400	(16)	15M @	600	(24)	15M @	600	(24)
	2.13	(7.0)	15M @	400	(16)	15M @	400	(16)	15M@	600	(24)	15M@	600	(24)	15M@	200	(8)	15M @	400	(16)	15M @	400	(16)	15M @	600	(24)
	2.44	(8.0)	15M @	200	(8)	15M @	400	(16)	15M@	400	(16)	15M@	600	(24)	15M@	200	(8)	15M @	400	(16)	15M @	400	(16)	15M @	600	(24)
$\begin{aligned} & 2.74 \\ & (9.0) \end{aligned}$	1.22	(4.0)	15M @	600	(24)	10M @	400	(16)	10M@	400	(16)	10M@	400	(16)	15M@	600	(24)	10M @	400	(16)	10M @	400	(16)	10M @	400	(16)
	1.53	(5.0)	15M @	400	(16)	15M @	600	(24)	10M@	400	(16)	10M@	400	(16)	15M @	400	(16)	15M @	600	(24)	15M @	600	(24)	10M @	400	(16)
	1.83	(6.0)	15M @	400	(16)	15M @	400	(16)	15M@	600	(24)	15M @	600	(24)	15M @	400	(16)	15M @	400	(16)	15M @	600	(24)	15M @	600	(24)
	2.13	(7.0)	15M @	200	(8)	15M @	400	(16)	15M@	400	(16)	15M@	600	(24)	15M @	200	(8)	15M @	400	(16)	15M @	400	(16)	15M @	600	(24)
	2.44	(8.0)	15M @	200	(8)	15M @	400	(16)	15M@	400	(16)	15M@	600	(24)	15M @	200	(8)	15M @	400	(16)	15M @	400	(16)	15M @	400	(16)
	2.74	(9.0)	15M @	200	(8)	15M @	200	(8)	15M @	400	(16)	15M@	400	(16)				15M @	200	(8)	15M @	400	(16)	15M @	400	(16)
$\begin{gathered} 3.05 \\ (10.0) \end{gathered}$	1.22	(4.0)	15M @	600	(24)	10M @	400	(16)	10M@	400	(16)	10M@	400	(16)	15M @	600	(24)	10M @	400	(16)	10M @	400	(16)	10M @	400	(16)
	1.53	(5.0)	15M @	400	(16)	15M @	600	(24)	10M @	400	(16)	10M@	400	(16)	15M @	400	(16)	15M @	600	(24)	10M @	400	(16)	10M @	400	(16)
	1.83	(6.0)	15M@	400	(16)	15M@	400	(16)	15M@	600	(24)	15M@	600	(24)	15M @	200	(8)	15M @	400	(16)	15M @	600	(24)	15M @	600	(24)
	2.13	(7.0)	15M@	200	(8)	15M@	400	(16)	15M@	400	(16)	15M@	600	(24)	15M@	200	(8)	15M @	400	(16)	15M @	400	(16)	15M @	600	(24)
	2.44	(8.0)	15M @	200	(8)	15M @	400	(16)	15M @	400	(16)	15M@	400	(16)				15M @	200	(8)	15M @	400	(16)	15M @	400	(16)
	2.74	(9.0)				15M @	200	(8)	15M@	400	(16)	15M@	400	(16)				15M @	200	(8)	15M @	200	(8)	15M @	400	(16)
	3.05	(10.0)				15M @	200	(8)	15M @	200	(8)	15M@	400	(16)				15M @	200	(8)	15M @	200	(8)	15M@	400	(16)
$\begin{aligned} & 3.35 \\ & (11.0) \end{aligned}$	1.22	(4.0)	15M@	600	(24)	10M @	400	(16)	10M@	400	(16)	10M@	400	(16)	15M@	600	(24)	10M @	400	(16)	10M @	400	(16)	10M@	400	(16)
	1.53	(5.0)	15M @	400	(16)	15M @	600	(24)	10M @	400	(16)	10M@	400	(16)	15M@	400	(16)	15M @	600	(24)	10M @	400	(16)	10M @	400	(16)
	1.83	(6.0)	15M@	200	(8)	15M @	400	(16)	15M @	600	(24)	15M@	600	(24)	15M @	200	(8)	15M @	400	(16)	15M @	400	(16)	15M@	600	(24)
	2.13	(7.0)	15M@	200	(8)	15M@	400	(16)	15M@	400	(16)	15M @	600	(24)	15M @	200	(8)	15M @	400	(16)	15M @	400	(16)	15M@	400	(16)
	2.44	(8.0)				15M @	200	(8)	15M@	400	(16)	15M@	400	(16)				15M @	200	(8)	15M @	400	(16)	15M@	400	(16)
	2.74	(9.0)				15M@	200	(8)	15M@	200	(8)	15M@	400	(16)				15M @	200	(8)	15M @	200	(8)	15M@	400	(16)
	3.05	(10.0)				15M @	200	(8)	15M@	200	(8)	15M@	400	(16)				15M @	200	(8)	15M @	200	(8)	15M@	200	(8)
,	3.35	(11.0)				15M @	200	(8)	15M@	200	(8)	15M@	200	(8)			$\checkmark$				15M@	200	(8)	15M@	200	(8)
$\begin{gathered} 3.66 \\ (12.0) \end{gathered}$	1.22	(4.0)	15M @	600	(24)	10M@	400	(16)	10M @	400	(16)	10M@	400	(16)	15M@	600	(24)	15M@	600	(24)	10M @	400	(16)	10M@	400	(16)
	1.53	(5.0)	15M @	400	(16)	15M @	600	(24)	10M @	400	(16)	10M@	400	(16)	15M@	400	(16)	15M @	600	(24)	15M @	600	(24)	10M@	400	(16)
	1.83	(6.0)	15M @	200	(8)	15M @	400	(16)	15M @	600	(24)	15M@	600	(24)	15M @	200	(8)	15M @	400	(16)	15M @	400	(16)	15M@	600	(24)
	2.13	(7.0)	15M@	200	(8)	15M @	400	(16)	15M@	400	(16)	15M@	400	(16)	15M@	200	(8)	15M @	200	(8)	15M @	400	(16)	15M@	400	(16)
	2.44	(8.0)				15M@	200	(8)	15M@	400	(16)	15M@	400	(16)				15M @	200	(8)	15M @	200	(8)	15M@	400	(16)
	2.74	(9.0)				15M @	200	(8)	15M@	200	(8)	15M@	400	(16)				15M @	200	(8)	15M @	200	(8)	15M@	400	(16)
	3.05	(10.0)				15M @	200	(8)	15M@	200	(8)	15M@	200	(8)							15M @	200	(8)	15M@	200	(8)
	3.35	(11.0)							15M@	200	(8)	15M@	200	(8)							15M @	200	(8)	15M@	200	(8)
	3.66	(12.0)							15M @	200	(8)	15M @	200	(8)										15M@	200	(8)
Horizontal Reinforcement	$\begin{aligned} & \hline \text { Block } \\ & 122^{\prime} \mathrm{a} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { leight of } \\ & \text { od } 18 \text { " } \\ & \hline \end{aligned}$	10M @	900	(36)																					
	$\begin{array}{r} \text { Block } \\ \text { of } \end{array}$	Height   6"	10M @	800	(32)	10M@	800	(32)	10M @	800	(32)	10M @	800	(32)	10M@	800	(32)									

## NOTES

[^5]
## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table B.2.2. Continued - Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.25<\mathrm{Sa}(0.2)$ $\leq 0.70$ and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$, for ICF Walls with 8 " Tie Spacing

$\begin{array}{\|c} \text { Wall Height } \\ m \\ (\mathrm{ft}) \end{array}$	Backfill Height m (ft)		Vertical Steel (Size and Spacing)																							
			$960 \mathrm{~kg} / \mathrm{m} 3$ ( 60 pcf ) Backfill Equivale												nt Fluid Density $\quad 1200 \mathrm{~kg} / \mathrm{m} 3$ (75 pcf)											
			150 mm (6") Wall			200 mm (8") Wall			250 mm ( 10 ") Wall			300 mm (12") Wall			150 mm (6") Wall			200 mm (8") Wall			250 mm (10") Wall			300 mm ( 12 L ) Wall		
$\begin{aligned} & 2.44 \\ & (8.0) \end{aligned}$	1.22	(4.0)	15M@	400	(16)	10M @	400	(16)	10M @	400	(16)	10M@	400	(16)	15M@	400	(16)	10M@	400	(16)	10M@	400	(16)	10M@	400	(16)
	1.53	(5.0)	15M @	400	(16)	15M @	600	(24)	10M @	400	(16)	10M @	400	(16)	15M @	400	(16)	15M@	600	(24)	10M@	400	(16)	10M@	400	(16)
	1.83	(6.0)	15M@	400	(16)	15M @	400	(16)	15M @	600	(24)	10M@	400	(16)	15M@	200	(8)	15M@	400	(16)	15M@	600	(24)	10M@	400	(16)
	2.13	(7.0)	15M@	200	(8)	15M @	400	(16)	15M @	400	(16)	15M @	600	(24)	15M@	200	(8)	15M@	400	(16)	15M@	400	(16)	15M@	600	(24)
	2.44	(8.0)	15M @	200	(8)	15M @	400	(16)	15M @	400	(16)	15M @	400	(16)	15M @	200	(8)	15M@	200	(8)	15M@	400	(16)	15M @	400	(16)
$\begin{aligned} & 2.74 \\ & (9.0) \end{aligned}$	1.22	(4.0)	15M@	600	(24)	15M @	600	(24)	10M @	400	(16)	10M@	400	(16)	15M@	600	(24)	15M@	600	(24)	10M@	400	(16)	10M@	400	(16)
	1.53	(5.0)	15M @	400	(16)	15M @	600	(24)	10M @	400	(16)	10M@	400	(16)	15M@	400	(16)	15M@	600	(24)	10M@	400	(16)	10M@	400	(16)
	1.83	(6.0)	15M @	200	(8)	15M @	400	(16)	15M @	600	(24)	10M @	400	(16)	15M@	200	(8)	15M@	400	(16)	15M@	400	(16)	15M@	600	(24)
	2.13	(7.0)	15M @	200	(8)	15M @	400	(16)	15M @	400	(16)	15M@	600	(24)	15M@	200	(8)	15M@	400	(16)	15M@	400	(16)	15M@	400	(16)
	2.44	(8.0)	15M@	200	(8)	15M @	200	(8)	15M@	400	(16)	15M@	400	(16)				15M@	200	(8)	15M@	400	(16)	15M@	400	(16)
	2.74	(9.0)				15M @	200	(8)	15M @	400	(16)	15M@	400	(16)				15M@	200	(8)	15M@	200	(8)	15M@	400	(16)
$\begin{gathered} 3.05 \\ (10.0) \end{gathered}$	1.22	(4.0)	15M@	600	(24)	15M @	600	(24)	10M @	400	(16)	10M@	400	(16)	15M@	600	(24)	15M@	600	(24)	10M@	400	(16)	10M@	400	(16)
	1.53	(5.0)	15M @	400	(16)	15M @	600	(24)	10M @	400	(16)	10M@	400	(16)	15M@	400	(16)	15M@	600	(24)	15M@	600	(24)	10M@	400	(16)
	1.83	(6.0)	15M@	200	(8)	15M @	400	(16)	15M @	400	(16)	15M@	600	(24)	15M@	200	(8)	15M@	400	(16)	15M@	400	(16)	15M@	600	(24)
	2.13	(7.0)	15M @	200	(8)	15M @	400	(16)	15M@	400	(16)	15M @	400	(16)	15M@	200	(8)	15M@	200	(8)	15M@	400	(16)	15M@	400	(16)
	2.44	(8.0)				15M @	200	(8)	15M @	400	(16)	15M@	400	(16)				15M@	200	(8)	15M@	200	(8)	15M@	400	(16)
	2.74	(9.0)				15M @	200	(8)	15M@	200	(8)	15M@	400	(16)				15M@	200	(8)	15M@	200	(8)	15M@	400	(16)
	3.05	(10.0)				15M @	200	(8)	15M @	200	(8)	15M@	200	(8)							15M@	200	(8)	15M@	200	(8)
$\begin{gathered} 3.35 \\ (11.0) \end{gathered}$	1.22	(4.0)	15M@	600	(24)	15M @	600	(24)	10M @	400	(16)	10M@	400	(16)	15M@	600	(24)	15M@	600	(24)	10M@	400	(16)	10M@	400	(16)
	1.53	(5.0)	15M@	400	(16)	15M @	600	(24)	10M @	400	(16)	10M@	400	(16)	15M@	400	(16)	15M@	400	(16)	15M@	600	(24)	10M@	400	(16)
	1.83	(6.0)	15M@	200	(8)	15M @	400	(16)	15M @	400	(16)	15M @	600	(24)	15M@	200	(8)	15M@	400	(16)	15M@	400	(16)	15M@	600	(24)
	2.13	(7.0)	15M@	200	(8)	15M @	200	(8)	15M @	400	(16)	15M@	400	(16)				15M@	200	(8)	15M@	400	(16)	15M@	400	(16)
	2.44	(8.0)				15M @	200	(8)	15M @	200	(8)	15M@	400	(16)				15M@	200	(8)	15M@	200	(8)	15M@	400	(16)
	2.74	(9.0)				15M @	200	(8)	15M @	200	(8)	15M@	400	(16)				15M@	200	(8)	15M@	200	(8)	15M@	200	(8)
	3.05	(10.0)							15M @	200	(8)	15M@	200	(8)							15M@	200	(8)	15M@	200	(8)
	3.35	$\begin{array}{\|l\|l\|} \hline \text { (11.0) } \end{array}$		-					15M@	200	(8)	15M@	200	(8)										15M@	200	(8)
TVIT	1.22	(4.0)	15M @	600	(24)	15M@	600	(24)	10M @	400	(16)	10M@	400	(16)	15M@	400	(16)	15M@	600	(24)	10M @	400	(16)	10M@	400	(16)
	1.53	(5.0)	15M@	400	(16)	15M @	600	(24)	15M @	600	(24)	10M@	400	(16)	15M@	400	(16)	15M@	400	(16)	15M@	600	(24)	10M@	400	(16)
	1.83	(6.0)	15M@	200	(8)	15M @	400	(16)	15M@	400	(16)	15M@	600	(24)	15M@	200	(8)	15M@	400	(16)	15M@	400	(16)	15M@	600	(24)
	2.13	(7.0)				15M @	200	(8)	15M @	400	(16)	15M@	400	(16)				15M@	200	(8)	15M@	400	(16)	15M@	400	(16)
	2.44	(8.0)				15M @	200	(8)	15M @	200	(8)	15M @	400	(16)				15M@	200	(8)	15M @	200	(8)	15M @	400	(16)
	2.74	(9.0)				15M @	200	(8)	15M @	200	(8)	15M@	200	(8)							15M@	200	(8)	15M@	200	(8)
	3.05	(10.0)							15M @	200	(8)	15M@	200	(8)										15M@	200	(8)
	3.35	(11.0)										15M@	200	(8)										15M@	200	(8)
	3.66	(12.0)										15M@	200	(8)												
Horizontal Reinforcement	$\begin{array}{r} \text { Block H } \\ 12 " \mathrm{an} \\ \hline \end{array}$	$\begin{aligned} & \text { teight of } \\ & \text { nd } 18^{\prime \prime} \\ & \hline \end{aligned}$	10M @	900	(36)	10M @	900	(36)	10M @	900	(36)	10M@	900	(36)	10M @	900	(36)									
	$\begin{array}{r} \text { Block } \\ \text { of } \end{array}$	Height   16 "	10M @	800	(32)	10M @	800	(32)	10M @	800	(32)	10M@	800	(32)	10M@	800	(32)	10M @	800	(32)	10M @	800	(32)	10M @	800	(32)

## NOTES

[^6]Build Anything Better.".

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table B.3.1. - Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.70<\mathrm{Sa}(0.2) \leq 1.2$ and Hourly Wind Pressure, $q_{1 / 50} \leq 1.05 \mathrm{kPa}$, for ICF Walls with 6" Tie Spacing

Wall Height   $m$   $(\mathrm{ft})$	Backfill Height m (ft)		Vertical Steel (Size and Spacing)																							
			$480 \mathrm{~kg} / \mathrm{m} 3$ ( 30 pcf ) Backfill Equivale												nt Fluid Density $720 \mathrm{~kg} / \mathrm{m} 3$ (45 pcf)											
			150 mm (6") Wall			200 mm ( $8^{\prime \prime}$ ) Wall			250 mm (10") Wall			300 mm (12") Wall			150 mm (6") Wall			200 mm ( $8^{\prime \prime}$ ) Wall			250 mm (10") Wall			300 mm (12") Wall		
$\begin{aligned} & 2.44 \\ & (8.0) \end{aligned}$	1.22	(4.0)	10M@	300	(12)	10M@	300	(12)	10M@	300	(12)	10M @	300	(12)	15M @	450	(18)	10M @	300	(12)	10M@	300	(12)	10M @	300	(12)
	1.53	(5.0)	15M@	450	(18)	10M @	300	(12)	10M@	300	(12)	10M @	300	(12)	15M @	450	(18)	10M @	300	(12)	10M@	300	(12)	10M@	300	(12)
	1.83	(6.0)	15M@	300	(12)	15M@	450	(18)	15M @	450	(18)	10M @	300	(12)	15M @	300	(12)	15M @	450	(18)	15M@	450	(18)	10M @	300	(12)
	2.13	(7.0)	15M@	150	(6)	15M@	300	(12)	15M@	450	(18)	10M @	300	(12)	15M @	150	(6)	15M @	300	(12)	15M@	450	(18)	15M@	450	(18)
	2.44	(8.0)	15M @	150	(6)	15M@	300	(12)	15M@	450	(18)	15M @	450	(18)	15 M @	150	(6)	15M @	300	(12)	15M@	300	(12)	15M@	450	(18)
$\begin{aligned} & 2.74 \\ & (9.0) \end{aligned}$	1.22	(4.0)	10M @	300	(12)																					
	1.53	(5.0)	15M@	450	(18)	15M@	450	(18)	10M@	300	(12)	10M@	300	(12)	15M @	300	(12)	15M @	450	(18)	10M@	300	(12)	10M@	300	(12)
	1.83	(6.0)	15M @	300	(12)	15M @	450	(18)	15M@	450	(18)	10 M @	300	(12)	15M @	150	(6)	15M @	300	(12)	15M@	450	(18)	10M @	300	(12)
	2.13	(7.0)	15M@	150	(6)	15M @	300	(12)	15M@	450	(18)	15M @	450	(18)	15M@	150	(6)	15M@	300	(12)	15M@	450	(18)	15M @	450	(18)
	2.44	(8.0)	15M@	150	(6)	15M@	300	(12)	15M@	300	(12)	15M@	300	(12)	15M @	150	(6)	15M@	150	(6)	15M@	300	(12)	15M @	300	(12)
	2.74	(9.0)	15M @	150	(6)	15M @	150	(6)	15M@	300	(12)	15M @	300	(12)				15M @	150	(6)	15M@	300	(12)	15M @	300	(12)
$\begin{gathered} 3.05 \\ (10.0) \end{gathered}$	1.22	(4.0)	10M@	300	(12)	10M @	300	(12)	10M@	300	(12)	10M@	300	(12)	10M@	300	(12)									
	1.53	(5.0)	15M@	300	(12)	15M@	450	(18)	10M@	300	(12)	10M @	300	(12)	15M @	300	(12)	15M@	450	(18)	10M@	300	(12)	10M @	300	(12)
	1.83	(6.0)	15M@	150	(6)	15M@	300	(12)	15M@	450	(18)	10M @	300	(12)	15M @	150	(6)	15M@	300	(12)	15M@	450	(18)	15M@	450	(18)
	2.13	(7.0)	15M @	150	(6)	15M @	300	(12)	15M @	450	(18)	15M @	450	(18)	15M @	150	(6)	15M @	300	(12)	15M @	300	(12)	15M @	450	(18)
	2.44	(8.0)	15M@	150	(6)	15M@	150	(6)	15M@	300	(12)	15M@	300	(12)				15M@	150	(6)	15M@	300	(12)	15M@	300	(12)
	2.74	(9.0)				15M@	150	(6)	15M@	150	(6)	15 M @	300	(12)				15M@	150	(6)	15M@	150	(6)	15M@	300	(12)
	3.05	(10.0)				15M @	150	(6)	15M@	150	(6)	15M @	300	(12)				15M@	150	(6)	15M@	150	(6)	15M @	300	(12)
$\begin{aligned} & 3.35 \\ & (11.0) \end{aligned}$	1.22	(4.0)	10M @	300	(12)	10M@	300	(12)	10M@	300	(12)	10M@	300	(12)	10M @	300	(12)	10M@	300	(12)	10M@	300	(12)	10M@	300	(12)
	1.53	(5.0)	15M @	300	(12)	15M@	450	(18)	10M@	300	(12)	10M @	300	(12)	15M@	300	(12)	15M@	450	(18)	10M@	300	(12)	10M@	300	(12)
	1.83	(6.0)	15M @	150	(6)	15M @	300	(12)	15M@	450	(18)	10 M @	300	(12)	15M @	150	(6)	15M@	300	(12)	15M @	450	(18)	15M@	450	(18)
	2.13	(7.0)	15M @	150	(6)	15M @	300	(12)	15M@	300	(12)	15M @	450	(18)	15M @	150	(6)	15M @	150	(6)	15M @	300	(12)	15M @	300	(12)
	2.44	(8.0)				15M @	150	(6)	15M@	300	(12)	15M @	300	(12)				15M @	150	(6)	15M@	150	(6)	15M @	300	(12)
	2.74	(9.0)				15M@	150	(6)	15M@	150	(6)	15M@	300	(12)				15M@	150	(6)	15M@	150	(6)	15M@	300	(12)
	3.05	(10.0)							15M@	150	(6)	15M @	150	(6)							15M@	150	(6)	15M@	150	(6)
	3.35	(11.0)			1				15M@	150	(6)	15M@	150	(6)			$\cdots$				15M@	150	(6)	15M@	150	(6)
$\begin{gathered} 3.66 \\ (12.0) \end{gathered}$	1.22	(4.0)	10M @	300	(12)	10 M @	300	(12)	10M @	300	(12)	10M@	300	(12)	10M @	300	(12)	10 M @	300	(12)	10M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15M@	300	(12)	15M @	450	(18)	10M@	300	(12)	10M@	300	(12)	15M @	300	(12)	15M @	450	(18)	10M@	300	(12)	10M@	300	(12)
	1.83	(6.0)	15M@	150	(6)	15M@	300	(12)	15M@	450	(18)	15M @	450	(18)	15M @	150	(6)	15M @	300	(12)	15M@	450	(18)	15M@	450	(18)
	2.13	(7.0)	15M @	150	(6)	15M @	150	(6)	15M@	300	(12)	15M @	450	(18)				15M @	150	(6)	15M@	300	(12)	15M@	450	(18)
	2.44	(8.0)				15M @	150	(6)	15M @	150	(6)	15M @	300	(12)				15M @	150	(6)	15M @	150	(6)	15M @	300	(12)
	2.74	(9.0)				15M@	150	(6)	15M@	150	(6)	15M @	150	(6)							15M@	150	(6)	15M@	150	(6)
	3.05	(10.0)							15M@	150	(6)	15M @	150	(6)							15M@	150	(6)	15M@	150	(6)
	3.35	(11.0)							15M@	150	(6)	15M@	150	(6)										15M@	150	(6)
	3.66	(12.0)										15M @	150	(6)										15M@	150	(6)
Horizontal Reinforcement	$\begin{array}{\|c} \hline \text { Block } \\ 12 " a a \\ \hline \end{array}$	feight of $\text { nd } 18^{\prime \prime}$	15M @	300	(12)	15M@	300	(12)	15M@	300	(12)	15M @	300	(12)	15M @	300	(12)	15M @	300	(12)	15M@	300	(12)	15M@	300	(12)
	$\begin{array}{\|r\|} \hline \text { Block } \\ \text { of } \end{array}$	$\begin{aligned} & \text { Height } \\ & 16^{\prime \prime} \\ & \hline \end{aligned}$	15M @	300	(12)																					

## NOTES

[^7]
## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table B.3.1. Continued - Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.70<\mathrm{Sa}(0.2)$ $\leq 1.2$ and Hourly Wind Pressure, $q_{1 / 50} \leq 1.05 \mathrm{kPa}$, for ICF Walls with 6 "Tie Spacing

Wall Height   m   (ft)	Backfill Height m (ft)		Vertical Steel (Size and Spacing)																							
			$960 \mathrm{~kg} / \mathrm{m} 3$ ( 60 pcf )												t Fluid Density $1200 \mathrm{~kg} / \mathrm{m} 3$ (75 pcf)											
			150 mm (6") Wall			200 mm (8") Wall			250 mm (10") Wall			300 mm (12") Wall			150 mm (6") Wall			200 mm (8") Wall			250 mm (10") Wall			300 mm (12") Wall		
$\begin{aligned} & 2.44 \\ & (8.0) \end{aligned}$	1.22	(4.0)	15M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10M @	300	(12)	15M @	300	(12)	15M @	450	(18)	10 M @	300	(12)	10M @	300	(12)
	1.83	(6.0)	15M @	150	(6)	15M @	450	(18)	15 M @	450	(18)	10M @	300	(12)	15 M @	150	(6)	15M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)
	2.13	(7.0)	15M @	150	(6)	15M @	300	(12)	15M @	450	(18)	15 M @	450	(18)	15M @	150	(6)	15M @	300	(12)	15 M @	450	(18)	15M @	450	(18)
	2.44	(8.0)	15M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15M @	300	(12)	15 M @	150	(6)	15M @	150	(6)	15 M @	300	(12)	15M @	300	(12)
$\begin{aligned} & 2.74 \\ & (9.0) \end{aligned}$	1.22	(4.0)	10 M @	300	(12)	10 M @	300	(12)	10 M @	450	(18)	10M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10M @	300	(12)
	1.53	(5.0)	15M @	300	(12)	15M @	450	(18)	10 M @	300	(12)	10M @	300	(12)	15M @	300	(12)	15M @	450	(18)	10M @	300	(12)	10M @	300	(12)
	1.83	(6.0)	15M @	150	(6)	15M @	300	(12)	15M @	450	(18)	15M @	450	(18)	15M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15M @	450	(18)
	2.13	(7.0)	15M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15M @	300	(12)
	2.44	(8.0)				15 M @	150	(6)	15M @	300	(12)	15M @	300	(12)				15 M @	150	(6)	15 M @	300	(12)	15M @	300	(12)
	2.74	(9.0)				15M @	150	(6)	15M @	150	(6)	15M @	300	(12)				15 M @	150	(6)	15M @	150	(6)	15M @	300	(12)
$\begin{gathered} 3.05 \\ (10.0) \end{gathered}$	1.22	(4.0)	10M @	300	(12)	10M @	300	(12)	10 M @	300	(12)	10M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10M @	300	(12)
	1.53	(5.0)	15M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10M @	300	(12)	15 M @	300	(12)	15M @	450	(18)	10M @	300	(12)	10 M @	300	(12)
	1.83	(6.0)	15M @	150	(6)	15M @	300	(12)	15M @	450	(18)	15M @	450	(18)	15M @	150	(6)	15M @	300	(12)	15M @	450	(18)	15M @	450	(18)
	2.13	(7.0)	15 M @	150	(6)	15M @	150	(6)	15M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	2.44	(8.0)				15M @	150	(6)	15M @	150	(6)	15M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
	2.74	(9.0)				15M @	150	(6)	15M @	150	(6)	15M @	300	(12)							15M @	150	(6)	15M @	300	(12)
	3.05	(10.0)							15M @	150	(6)	15M @	150	(6)							15M @	150	(6)	15 M @	150	(6)
$\begin{aligned} & 3.35 \\ & (11.0) \end{aligned}$	1.22	(4.0)	10M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)															
	1.53	(5.0)	15M @	300	(12)	15M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
	1.83	(6.0)	15M @	150	(6)	15M @	300	(12)	15M @	450	(18)	15M @	450	(18)	15M @	150	(6)	15M @	300	(12)	15M @	450	(18)	15M @	450	(18)
	2.13	(7.0)	15M @	150	(6)	15M @	150	(6)	15M @	300	(12)	15M @	300	(12)				15M @	150	(6)	15M @	300	(12)	15M @	300	(12)
	2.44	(8.0)				15M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)				15M @	150	(6)	15 M @	150	(6)	15M @	300	(12)
	2.74	(9.0)							15M @	150	(6)	15M @	150	(6)							15M @	150	(6)	15 M @	150	(6)
	3.05	(10.0)							15M @	150	(6)	15M @	150	(6)							15M @	150	(6)	15M @	150	(6)
	3.35	(11.0)									-	15M@	150	(6)			-							15M @	150	(6)
$\begin{gathered} 3.66 \\ (12.0) \end{gathered}$	1.22	(4.0)	10M @	300	(12)	10M @	300	(12)	10 M @	300	(12)	10M @	300	(12)	10M @	300	(12)	10 M @	300	(12)	10M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15M @	300	(12)	15M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
	1.83	(6.0)	15M @	150	(6)	15M @	300	(12)	15M @	300	(12)	15M @	450	(18)	15M @	150	(6)	15M @	300	(12)	15M @	300	(12)	15M @	450	(18)
	2.13	(7.0)				15M @	150	(6)	15M @	300	(12)	15M @	300	(12)				15M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	2.44	(8.0)				15 M @	150	(6)	15M @	150	(6)	15M @	300	(12)							15M @	150	(6)	15M @	150	(6)
	2.74	(9.0)							15M @	150	(6)	15M @	150	(6)							15M @	150	(6)	15M @	150	(6)
	3.05	(10.0)										15M @	150	(6)										15M @	150	(6)
	3.35	(11.0)										15M @	150	(6)										15M @	150	(6)
	3.66	(12.0)										15M @	150	(6)												
Horizontal Reinforcement	$\begin{array}{r} \hline \text { Block } \\ 12 " \mathrm{a} \\ \hline \end{array}$	$\begin{aligned} & \text { eight of } \\ & \text { d } 18^{\prime \prime} \\ & \hline \end{aligned}$	15M @	300	(12)	15 M @	300	(12)	15M @	300	(12)															
	$\begin{array}{r} \text { Block } \\ \text { of } \end{array}$	$\begin{aligned} & \text { Height } \\ & 6^{\prime \prime} \\ & \hline \end{aligned}$	15M @	300	(12)	15 M @	300	(12)	15M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)									

## NOTES

[^8]LoGix

## LOGIX ${ }^{\oplus}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table B.3.2. - Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.70<\mathrm{Sa}(0.2) \leq 1.2$ and Hourly Wind Pressure, $q_{1 / 50} \leq 1.05 k P a$, for ICF Walls with 8 " Tie Spacing

Wall Height   m   (ft)	Backfill Height m (ft)		Vertical Steel (Size and Spacing)																							
			$480 \mathrm{~kg} / \mathrm{m} 3$ ( 30 pcf ) Backfill Equivale												nt Fluid Density $\quad 720 \mathrm{~kg} / \mathrm{m} 3$ (45 pcf)											
			150 mm (6") Wall			200 mm ( $8^{\prime \prime}$ ) Wall			250 mm (10") Wall			300 mm (12") Wall			150 mm (6") Wall			200 mm ( $8^{\prime \prime}$ ) Wall			250 mm ( 10 ") Wall			300 mm (12") Wall		
$\begin{aligned} & 2.44 \\ & (8.0) \end{aligned}$	1.22	(4.0)	10M@	200	(8)	10M @	400	(16)	10M@	400	(16)	10M@	400	(16)	15M @	400	(16)	10M @	400	(16)	10M @	400	(16)	10M @	400	(16)
	1.53	(5.0)	15M @	400	(16)	10M @	200	(8)	10M@	400	(16)	10M@	400	(16)	15M @	400	(16)	10M @	200	(8)	15M@	600	(24)	10M @	400	(16)
	1.83	(6.0)	15M @	200	(8)	15M @	400	(16)	10M@	200	(8)	15M@	600	(24)	15M@	200	(8)	15M @	400	(16)	15M@	400	(16)	10M @	200	(8)
	2.13	(7.0)	15M@	200	(8)	15M @	400	(16)	15M@	400	(16)	15M@	400	(16)	15M@	200	(8)	15M @	400	(16)	15M@	400	(16)	15M @	400	(16)
	2.44	(8.0)	15M @	200	(8)	15M @	200	(8)	15M @	400	(16)	15M@	400	(16)				15M @	200	(8)	15M @	400	(16)	15M @	400	(16)
$\begin{aligned} & 2.74 \\ & (9.0) \end{aligned}$	1.22	(4.0)	10M@	200	(8)	10M @	400	(16)	10M@	400	(16)	10M@	400	(16)	10M@	200	(8)	10M @	400	(16)	10M@	400	(16)	10M @	400	(16)
	1.53	(5.0)	15M @	400	(16)	15M @	400	(16)	15M@	600	(24)	10M@	400	(16)	15M @	400	(16)	15M @	400	(16)	10M @	200	(8)	10M @	400	(16)
	1.83	(6.0)	15M @	200	(8)	15M @	400	(16)	15M @	400	(16)	10M@	200	(8)	15M@	200	(8)	15M @	400	(16)	15M@	400	(16)	10M @	200	(8)
	2.13	(7.0)	15M @	200	(8)	15M @	200	(8)	15M@	400	(16)	15M@	400	(16)				15M @	200	(8)	15M@	400	(16)	15M @	400	(16)
	2.44	(8.0)				15M @	200	(8)	15M@	400	(16)	15M@	400	(16)				15M @	200	(8)	15M @	200	(8)	15M @	400	(16)
	2.74	(9.0)				15M @	200	(8)	15M @	200	(8)	15M@	400	(16)				15M @	200	(8)	15M@	200	(8)	15M @	400	(16)
$\begin{gathered} 3.05 \\ (10.0) \end{gathered}$	1.22	(4.0)	10M @	200	(8)	10M @	400	(16)	10M@	400	(16)	10M@	400	(16)	10M@	200	(8)	10M @	400	(16)	10M@	400	(16)	10M @	400	(16)
	1.53	(5.0)	15M @	400	(16)	15M @	400	(16)	10M @	200	(8)	10M @	400	(16)	15M @	200	(8)	15M @	400	(16)	10M@	200	(8)	10M @	400	(16)
	1.83	(6.0)	15M@	200	(8)	15M@	400	(16)	15M@	400	(16)	10M@	200	(8)	15M @	200	(8)	15M @	400	(16)	15M@	400	(16)	10M @	200	(8)
	2.13	(7.0)				15M @	200	(8)	15M@	400	(16)	15M@	400	(16)				15M @	200	(8)	15M @	400	(16)	15M @	400	(16)
	2.44	(8.0)				15M @	200	(8)	15M@	200	(8)	15M@	400	(16)				15M @	200	(8)	15M @	200	(8)	15M @	400	(16)
	2.74	(9.0)				15M @	200	(8)	15M@	200	(8)	15M@	200	(8)							15M@	200	(8)	15M @	200	(8)
	3.05	(10.0)							15M @	200	(8)	15M@	200	(8)							15M@	200	(8)	15M @	200	(8)
$\begin{aligned} & 3.35 \\ & (11.0) \end{aligned}$	1.22	(4.0)	10M @	200	(8)	10M @	400	(16)	10M@	400	(16)	10M@	400	(16)	10M@	200	(8)	10M @	400	(16)	10M@	400	(16)	10M @	400	(16)
	1.53	(5.0)	15M @	400	(16)	15M @	400	(16)	10M @	200	(8)	10M@	400	(16)	15M@	200	(8)	15M @	400	(16)	10M @	200	(8)	10M @	400	(16)
	1.83	(6.0)	15M @	200	(8)	15M @	400	(16)	15M @	400	(16)	10M@	200	(8)	15M@	200	(8)	15M @	400	(16)	15M@	400	(16)	15M @	400	(16)
	2.13	(7.0)				15M @	200	(8)	15M@	400	(16)	15M@	400	(16)				15M @	200	(8)	15M @	200	(8)	15M @	400	(16)
	2.44	(8.0)				15M @	200	(8)	15M@	200	(8)	15M@	400	(16)				15M @	200	(8)	15M@	200	(8)	15M @	200	(8)
	2.74	(9.0)							15M@	200	(8)	15M@	200	(8)							15M@	200	(8)	15M @	200	(8)
	3.05	(10.0)							15M@	200	(8)	15M @	200	(8)										15M @	200	(8)
,	3.35	(11.0)										15M@	200	(8)										15M @	200	(8)
$\begin{gathered} 3.66 \\ (12.0) \end{gathered}$	1.22	(4.0)	10M @	200	(8)	10M@	400	(16)	10M @	400	(16)	10M@	400	(16)	10M@	200	(8)	10M@	400	(16)	10M @	400	(16)	10M@	400	(16)
	1.53	(5.0)	15M @	200	(8)	15M @	400	(16)	10M @	200	(8)	10M@	400	(16)	15M@	200	(8)	15M @	400	(16)	10M@	200	(8)	10M @	400	(16)
	1.83	(6.0)	15M @	200	(8)	15M @	400	(16)	15M@	400	(16)	15M@	400	(16)	15M @	200	(8)	15M @	200	(8)	15M @	400	(16)	15M @	400	(16)
	2.13	(7.0)				15M @	200	(8)	15M @	200	(8)	15M@	400	(16)				15M @	200	(8)	15M@	200	(8)	15M @	400	(16)
	2.44	(8.0)				15M @	200	(8)	15M@	200	(8)	15M@	200	(8)							15M@	200	(8)	15M @	200	(8)
	2.74	(9.0)							15M@	200	(8)	15M@	200	(8)							15M@	200	(8)	15M @	200	(8)
	3.05	(10.0)										15M@	200	(8)										15M @	200	(8)
	3.35	(11.0)										15M@	200	(8)												
	3.66	(12.0)																								
Horizontal Reinforcement	$\begin{aligned} & \text { Block } \\ & 122 \mathrm{a} \\ & \hline \end{aligned}$	eight of nd 18"	15M @	300	(12)	15M@	300	(12)	15M @	300	(12)	15M @	300	(12)	15M@	300	(12)	15M @	300	(12)	15M @	300	(12)	15 M @	300	(12)
	$\begin{array}{r} \text { Block } \\ \text { of } \end{array}$	Height   6"	15M @	300	(12)																					

## NOTES

[^9]
## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table B.3.2. Continued- Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $0.70<\mathrm{Sa}(\mathbf{0 . 2})$ $\leq 1.2$ and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$, for ICF Walls with 8 "'Tie Spacing

Wall Height   m   (ft)	Backfill Height m (ft)		Vertical Steel (Size and Spacing)																							
			$960 \mathrm{~kg} / \mathrm{m} 3$ ( 60 pcf ) Backfill Equivale												nt Fluid Density $1200 \mathrm{~kg} / \mathrm{m} 3$ (75 pcf)											
			150 mm ( $6^{\prime \prime}$ ) Wall			200 mm (8") Wall			250 mm (10") Wall			300 mm (12") Wall			150 mm (6") Wall			200 mm (8") Wall			250 mm (10") Wall			300 mm (12") Wall		
$\begin{aligned} & 2.44 \\ & (8.0) \end{aligned}$	1.22	(4.0)	15M @	400	(16)	10M @	400	(16)	10M @	400	(16)	10M @	400	(16)	15 M @	400	(16)	10M @	400	(16)	10M @	400	(16)	10M @	400	(16)
	1.53	(5.0)	15M @	400	(16)	15M @	400	(16)	15M @	600	(24)	10M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	10M @	200	(8)	10M @	400	(16)
	1.83	(6.0)	15M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10M @	200	(8)	15M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10M @	200	(8)
	2.13	(7.0)	15 M @	200	(8)	15M @	200	(8)	15M @	400	(16)	15M @	400	(16)				15M @	200	(8)	15M @	400	(16)	15M @	400	(16)
	2.44	(8.0)				15M @	200	(8)	15M @	400	(16)	15M @	400	(16)				15M @	200	(8)	15M @	200	(8)	15M @	400	(16)
$\begin{aligned} & 2.74 \\ & (9.0) \end{aligned}$	1.22	(4.0)	10M @	200	(8)	10M @	400	(16)	10M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	10M @	400	(16)	10M @	400	(16)	10M @	400	(16)
	1.53	(5.0)	15M @	200	(8)	15M @	400	(16)	10M @	200	(8)	10M @	400	(16)	15 M @	200	(8)	15M @	400	(16)	10M @	200	(8)	10M @	400	(16)
	1.83	(6.0)	15M @	200	(8)	15M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)	15 M @	200	(8)	15M @	400	(16)	15 M @	400	(16)	15M @	400	(16)
	2.13	(7.0)				15M @	200	(8)	15M @	400	(16)	15M @	400	(16)				15M @	200	(8)	15M @	400	(16)	15M @	400	(16)
	2.44	(8.0)				15M @	200	(8)	15M @	200	(8)	15M @	400	(16)				15M @	200	(8)	15M @	200	(8)	15M @	400	(16)
	2.74	(9.0)				15M @	200	(8)	15M @	200	(8)	15M @	200	(8)				15M @	200	(8)	15M @	200	(8)	15M @	200	(8)
$\begin{gathered} 3.05 \\ (10.0) \end{gathered}$	1.22	(4.0)	10M @	200	(8)	10M @	400	(16)	10M @	400	(16)	10M @	400	(16)	10 M @	200	(8)	10M @	400	(16)	10M @	400	(16)	10M @	400	(16)
	1.53	(5.0)	15M @	200	(8)	15M @	400	(16)	10M @	200	(8)	10 M @	400	(16)	15 M @	200	(8)	15M @	400	(16)	10 M @	200	(8)	15M @	600	(24)
	1.83	(6.0)	15M @	200	(8)	15M @	400	(16)	15M @	400	(16)	15M @	400	(16)	15 M @	200	(8)	15M @	200	(8)	15M @	400	(16)	15M @	400	(16)
	2.13	(7.0)				15M @	200	(8)	15M @	200	(8)	15 M @	400	(16)				15M @	200	(8)	15M @	200	(8)	15M @	400	(16)
	2.44	(8.0)				15M @	200	(8)	15M @	200	(8)	15 M @	200	(8)				15M @	200	(8)	15M @	200	(8)	15M @	200	(8)
	2.74	(9.0)							15M @	200	(8)	15M @	200	(8)							15 M @	200	(8)	15M @	200	(8)
	3.05	(10.0)							15M @	200	(8)	15M @	200	(8)										15M @	200	(8)
$\begin{aligned} & 3.35 \\ & (11.0) \end{aligned}$	1.22	(4.0)	10M @	200	(8)	10M @	400	(16)	10M @	400	(16)	10 M @	400	(16)	10 M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10 M @	400	(16)
	1.53	(5.0)	15M @	200	(8)	15M @	400	(16)	10M @	200	(8)	10M @	200	(8)	15 M @	200	(8)	15M @	400	(16)	15M @	400	(16)	15M @	600	(24)
	1.83	(6.0)	15M @	200	(8)	15M @	200	(8)	15 M @	400	(16)	15M @	400	(16)				15M @	200	(8)	15M @	400	(16)	15M @	400	(16)
	2.13	(7.0)				15 M @	200	(8)	15 M @	200	(8)	15M @	400	(16)				15M @	200	(8)	15 M @	200	(8)	15M @	400	(16)
	2.44	(8.0)							15M @	200	(8)	15M @	200	(8)							15M @	200	(8)	15M @	200	(8)
	2.74	(9.0)							15M @	200	(8)	15M @	200	(8)										15M @	200	(8)
	3.05	(10.0)										15M @	200	(8)										15M @	200	(8)
	3.35	(11.0)			,							15M@	200	(8)												
$\begin{gathered} 3.66 \\ (12.0) \end{gathered}$	1.22	(4.0)	10M @	200	(8)	10 M @	400	(16)	10 M @	400	(16)	10M @	400	(16)	10M@	200	(8)	10M@	200	(8)	10M @	400	(16)	$10 \mathrm{M} @$	400	(16)
	1.53	(5.0)	15M @	200	(8)	15 M @	400	(16)	10M @	200	(8)	15M @	600	(24)	15 M @	200	(8)	15M @	400	(16)	15M @	400	(16)	10 M @	200	(8)
	1.83	(6.0)				15M @	200	(8)	15 M @	400	(16)	15M @	400	(16)				15M @	200	(8)	15M @	400	(16)	15M @	400	(16)
	2.13	(7.0)				15M @	200	(8)	15M @	200	(8)	15M @	400	(16)				15M @	200	(8)	15M @	200	(8)	15M @	400	(16)
	2.44	(8.0)							15M @	200	(8)	15 M @	200	(8)							15 M @	200	(8)	15 M @	200	(8)
	2.74	(9.0)										15M @	200	(8)										15M @	200	(8)
	3.05	(10.0)										15M @	200	(8)												
	3.35	(11.0)																								
	3.66	(12.0)																								
Horizontal Reinforcement	$\begin{array}{r} \text { Block } \\ 12 " \mathrm{a} \\ \hline \end{array}$	$\begin{aligned} & \text { eight of } \\ & \text { nd } 18^{\prime \prime} \end{aligned}$	15M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15M @	300	(12)	15M @	300	(12)	15 M @	300	(12)	15M @	300	(12)
	$\begin{array}{r} \text { Block } \\ \text { of } \end{array}$	$\begin{aligned} & \text { Height } \\ & 16^{\prime \prime} \end{aligned}$	15M @	300	(12)	15 M @	300	(12)	15M @	300	(12)															

## NOTES

1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20 MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.
2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of $480 \mathrm{~kg} / \mathrm{m} 3$.
3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.
4. Provide 3 horizontal bars in every two rows of 18 " high block to achieve an average spacing of 12 " o.c. where 12 " spacing o.c. is specified for horizontal bars, as shown in Detail A.4.
5. Provide 4 horizontal bars in every three rows of $16^{\prime \prime}$ high block to achieve an average spacing of $12^{\prime \prime}$ o.c. where $12^{\prime \prime}$ spacing o.c. is specified for horizontal bars, as shown in Detail A. 5 .

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table B.4.1. - Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $1.2<\mathrm{Sa}(0.2) \leq 1.75$ and Hourly Wind Pressure, $q_{1 / 50} \leq 1.05 k P a$, for ICF Walls with 6 "Tie Spacing

Wall Height   m   (ft)	Backfill Height m (ft)		Vertical Steel (Size and Spacing)																							
															nt Fluid Density $720 \mathrm{~kg} / \mathrm{m3}$ (45 pcf)											
			150 mm (6") Wall			200 mm ( $8^{\prime \prime}$ ) Wall			250 mm (10") Wall			300 mm (12") Wall			150 mm (6") Wall			200 mm (8") Wall			250 mm ( 10 ") Wall			300 mm (12") Wall		
$\begin{aligned} & 2.44 \\ & (8.0) \end{aligned}$	1.22	(4.0)	10M@	300	(12)	10M @	300	(12)	10M@	300	(12)	10M@	300	(12)	15M @	450	(18)	10M @	300	(12)	10M @	300	(12)	10M@	300	(12)
	1.53	(5.0)	15M@	300	(12)	15M @	450	(18)	10M@	300	(12)	10M@	300	(12)	15M@	300	(12)	15M@	450	(18)	15M @	450	(18)	10M@	300	(12)
	1.83	(6.0)	15M@	150	(6)	15M @	300	(12)	15M@	450	(18)	15M@	450	(18)	15M@	150	(6)	15M@	300	(12)	15M @	450	(18)	15M@	450	(18)
	2.13	(7.0)	15M @	150	(6)	15M@	300	(12)	15M@	300	(12)	15M@	450	(18)	15M@	150	(6)	15M@	300	(12)	15M @	300	(12)	15M@	300	(12)
	2.44	(8.0)	15M @	150	(6)	15M @	150	(6)	15M @	300	(12)	15M@	300	(12)				15M @	150	(6)	15M @	300	(12)	15M@	300	(12)
$\begin{aligned} & 2.74 \\ & (9.0) \end{aligned}$	1.22	(4.0)	15M @	450	(18)	10M @	300	(12)	10M@	300	(12)	10M@	300	(12)	15M@	450	(18)	10M @	300	(12)	10M @	300	(12)	10M@	300	(12)
	1.53	(5.0)	15M @	300	(12)	15M @	450	(18)	15M @	450	(18)	10M@	300	(12)	15M @	300	(12)	15M@	450	(18)	15M @	450	(18)	10M@	300	(12)
	1.83	(6.0)	15M @	150	(6)	15M @	300	(12)	15M@	450	(18)	15M@	450	(18)	15M @	150	(6)	15M@	300	(12)	15M @	450	(18)	15M@	450	(18)
	2.13	(7.0)	15M@	150	(6)	15M @	150	(6)	15M@	300	(12)	15M@	300	(12)	15M@	150	(6)	15M@	150	(6)	15M @	300	(12)	15M@	300	(12)
	2.44	(8.0)				15M @	150	(6)	15M@	150	(6)	15M@	300	(12)				15M@	150	(6)	15M @	150	(6)	15M@	300	(12)
	2.74	(9.0)				15M @	150	(6)	15M @	150	(6)	15M@	300	(12)				15M @	150	(6)	15M @	150	(6)	15M@	300	(12)
$\begin{gathered} 3.05 \\ (10.0) \end{gathered}$	1.22	(4.0)	15M @	300	(12)	10M @	300	(12)	10M@	300	(12)	10M@	300	(12)	15M@	450	(18)	10M@	300	(12)	10M @	300	(12)	10M@	300	(12)
	1.53	(5.0)	15M@	150	(6)	15M@	450	(18)	15M@	450	(18)	10M@	300	(12)	15 M @	150	(6)	15M@	450	(18)	15M @	450	(18)	10M@	300	(12)
	1.83	(6.0)	15M @	150	(6)	15M @	300	(12)	15M@	300	(12)	15M@	450	(18)	15M @	150	(6)	15M@	300	(12)	15M @	300	(12)	15M @	450	(18)
	2.13	(7.0)				15M @	150	(6)	15M@	300	(12)	15M@	300	(12)				15M@	150	(6)	15M @	300	(12)	15M@	300	(12)
	2.44	(8.0)				15M @	150	(6)	15M@	150	(6)	15M@	300	(12)				15M@	150	(6)	15M @	150	(6)	15M@	300	(12)
	2.74	(9.0)				15M @	150	(6)	15M@	150	(6)	15M@	150	(6)				15M@	150	(6)	15M @	150	(6)	15M@	150	(6)
	3.05	(10.0)							15M@	150	(6)	15M@	150	(6)							15M@	150	(6)	15M@	150	(6)
$\begin{aligned} & 3.35 \\ & (11.0) \end{aligned}$	1.22	(4.0)	15M@	300	(12)	10M @	300	(12)	10M@	300	(12)	10M@	300	(12)	15M@	450	(18)	10M @	300	(12)	10M@	300	(12)	10M@	300	(12)
	1.53	(5.0)	15M@	150	(6)	15M @	450	(18)	15M@	450	(18)	10M@	300	(12)	15M@	150	(6)	15M@	450	(18)	15M@	450	(18)	10M@	300	(12)
	1.83	(6.0)	15M @	150	(6)	15M @	300	(12)	15M @	300	(12)	15M@	450	(18)	15M @	150	(6)	15M @	150	(6)	15M @	300	(12)	15M @	450	(18)
	2.13	(7.0)				15M @	150	(6)	15M @	150	(6)	15M@	300	(12)				15M@	150	(6)	15M@	150	(6)	15M@	300	(12)
	2.44	(8.0)				15M @	150	(6)	15M@	150	(6)	15M@	150	(6)				15M@	150	(6)	15M@	150	(6)	15M@	150	(6)
	2.74	(9.0)							15M@	150	(6)	15M@	150	(6)							15M@	150	(6)	15M@	150	(6)
	3.05	(10.0)							15M@	150	(6)	15M@	150	(6)										15M@	150	(6)
	3.35	(11.0)			,					-		15M@	150	(6)		$\checkmark$	$\checkmark$							15M @	150	(6)
W	1.22	(4.0)	15M @	300	(12)	10 M @	300	(12)	10M @	300	(12)	10 M @	300	(12)	15M@	450	(18)	10M@	300	(12)	10M@	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15M@	150	(6)	15M @	450	(18)	15M@	450	(18)	10M@	300	(12)	15M@	150	(6)	15M@	300	(12)	15M@	450	(18)	10M@	300	(12)
	1.83	(6.0)	15M @	150	(6)	15M @	150	(6)	15M @	300	(12)	15M @	450	(18)	15M @	150	(6)	15M @	150	(6)	15M @	300	(12)	15M @	450	(18)
	2.13	(7.0)				15M @	150	(6)	15M@	150	(6)	15M@	300	(12)				15M@	150	(6)	15M@	150	(6)	15M@	300	(12)
	2.44	(8.0)				15M @	150	(6)	15M@	150	(6)	15M@	150	(6)							15M@	150	(6)	15M@	150	(6)
	2.74	(9.0)							15M@	150	(6)	15M@	150	(6)							15M@	150	(6)	15M@	150	(6)
	3.05	(10.0)										15M @	150	(6)										15M @	150	(6)
	3.35	(11.0)										15M@	150	(6)												
	3.66	(12.0)																								
Horizontal Reinforcement	$\begin{array}{\|c} \hline \text { Block } \\ 12 " a \\ \hline \end{array}$	$\begin{aligned} & \text { teight of } \\ & \text { nd } 18^{\prime \prime} \\ & \hline \end{aligned}$	15M @	300	(12)																					
	$\begin{array}{\|c} \hline \begin{array}{r} \text { Block } \\ \text { of } \end{array} \\ \hline \end{array}$	$\begin{aligned} & \text { Height } \\ & \hline 16^{\prime \prime} \\ & \hline \end{aligned}$	15M @	300	(12)																					

## NOTES

1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20 MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.
2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4 .4 .6 may be designed for an equivalent fluid pressure of $480 \mathrm{~kg} / \mathrm{m} 3$.
3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.
4. Provide 3 horizontal bars in every two rows of $18^{\prime \prime}$ high block to achieve an average spacing of $12^{\prime \prime}$ o.c. where $12^{\prime \prime}$ spacing o.c. is specified for horizontal bars, as shown in Detail A.4.
5. Provide 4 horizontal bars in every three rows of $16^{\prime \prime}$ high block to achieve an average spacing of 12 " o.c. where 12 " spacing o.c. is specified for horizontal bars, as shown in Detail A.5.

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table B.4.1. Continued- Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $1.2<\mathrm{Sa}(\mathbf{0 . 2})$ $\leq 1.75$ and Hourly Wind Pressure, $q_{1 / 50} \leq 1.05 \mathrm{kPa}$, for ICF Walls with 6 " Tie Spacing

Wall Height m   (ft)	Backfill Height m (ft)		Vertical Steel (Size and Spacing)																							
			$960 \mathrm{~kg} / \mathrm{m} 3(60 \mathrm{pcf}) \quad$ Backfill Equivale												俍 $1200 \mathrm{~kg} / \mathrm{m} 3$ (75 pcf)											
			150 mm ( $6^{\prime \prime}$ ) Wall			200 mm (8") Wall			250 mm (10") Wall			300 mm (12") Wall			150 mm (6") Wall			200 mm (8") Wall			250 mm (10") Wall			300 mm (12") Wall		
$\begin{aligned} & 2.44 \\ & (8.0) \end{aligned}$	1.22	(4.0)	15M @	450	(18)	10M @	300	(12)	10M @	300	(12)	10 M @	300	(12)	15 M @	450	(18)	10M @	300	(12)	10M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15M @	300	(12)	15M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)	15 M @	150	(6)	15M @	450	(18)	15M @	450	(18)	10M @	300	(12)
	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15M @	150	(6)	15 M @	300	(12)	15M @	450	(18)	15 M @	450	(18)
	2.13	(7.0)	15M @	150	(6)	15 M @	150	(6)	15M @	300	(12)	15 M @	300	(12)	15 M @	150	(6)	15M @	150	(6)	15 M @	300	(12)	15M @	300	(12)
	2.44	(8.0)				15 M @	150	(6)	15M @	300	(12)	15 M @	300	(12)				15M @	150	(6)	15 M @	300	(12)	15M @	300	(12)
$\begin{aligned} & 2.74 \\ & (9.0) \end{aligned}$	1.22	(4.0)	15M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10M @	300	(12)	15M @	450	(18)	10 M @	300	(12)	10M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15M @	150	(6)	15M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)	15M @	150	(6)	15M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
	1.83	(6.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)	15 M @	450	(18)
	2.13	(7.0)				15M @	150	(6)	15M @	300	(12)	15 M @	300	(12)				15M @	150	(6)	15 M @	300	(12)	15M @	300	(12)
	2.44	(8.0)				15 M @	150	(6)	15 M @	150	(6)	15M @	300	(12)				15 M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)
	2.74	(9.0)				15 M @	150	(6)	15 M @	150	(6)	15 M @	150	(6)				15M @	150	(6)	15 M @	150	(6)	15 M @	150	(6)
$\begin{gathered} 3.05 \\ (10.0) \end{gathered}$	1.22	(4.0)	15M @	450	(18)	10M @	300	(12)	10M @	300	(12)	10M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15M @	150	(6)	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)
	1.83	(6.0)	15M @	150	(6)	15M @	300	(12)	15 M @	300	(12)	15M @	450	(18)	15 M @	150	(6)	15M @	150	(6)	15M @	300	(12)	15M @	450	(18)
	2.13	(7.0)				15M @	150	(6)	15M @	150	(6)	15 M @	300	(12)				15M @	150	(6)	15M @	150	(6)	15M @	300	(12)
	2.44	(8.0)				15 M @	150	(6)	15 M @	150	(6)	15M @	150	(6)				15M @	150	(6)	15M @	150	(6)	15M @	150	(6)
	2.74	(9.0)							15M @	150	(6)	15M @	150	(6)							15M @	150	(6)	15 M @	150	(6)
	3.05	(10.0)							15 M @	150	(6)	15M @	150	(6)							15M @	150	(6)	15 M @	150	(6)
$\begin{aligned} & 3.35 \\ & (11.0) \end{aligned}$	1.22	(4.0)	15M @	450	(18)	10M @	300	(12)	10M @	300	(12)	10 M @	300	(12)	15M @	300	(12)	10M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15 M @	150	(6)	15 M @	300	(12)	15M @	450	(18)	15M @	450	(18)	15 M @	150	(6)	15M @	300	(12)	15M @	450	(18)	15M @	450	(18)
	1.83	(6.0)	15M @	150	(6)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15 M @	150	(6)	15M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)
	2.13	(7.0)				15 M @	150	(6)	15 M @	150	(6)	15M @	300	(12)				15M @	150	(6)	15M @	150	(6)	15M @	300	(12)
	2.44	(8.0)				15M @	150	(6)	15 M @	150	(6)	15 M @	150	(6)							15M @	150	(6)	15 M @	150	(6)
	2.74	(9.0)							15 M @	150	(6)	15M @	150	(6)							15M @	150	(6)	15M @	150	(6)
	3.05	(10.0)										15M @	150	(6)										15M @	150	(6)
	3.35	(11.0)			,							15M@	150	(6)										15 M @	150	(6)
$\begin{gathered} 3.66 \\ (12.0) \end{gathered}$	1.22	(4.0)	15M @	450	(18)	10M @	300	(12)	10M @	300	(12)	10M @	300	(12)	15M @	300	(12)	10M@	300	(12)	10M @	300	(12)	10 M @	300	(12)
	1.53	(5.0)	15 M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)	15M @	450	(18)	15 M @	150	(6)	15M @	300	(12)	15M@	450	(18)	15M @	450	(18)
	1.83	(6.0)				15M @	150	(6)	15 M @	300	(12)	15 M @	450	(18)				15M @	150	(6)	15 M @	300	(12)	15 M @	300	(12)
	2.13	(7.0)				15M @	150	(6)	15M @	150	(6)	15 M @	300	(12)				15M @	150	(6)	15 M @	150	(6)	15M @	300	(12)
	2.44	(8.0)							15 M @	150	(6)	15 M @	150	(6)							15M @	150	(6)	15 M @	150	(6)
	2.74	(9.0)										15M @	150	(6)										15 M @	150	(6)
	3.05	(10.0)										15M @	150	(6)												
	3.35	(11.0)																								
	3.66	(12.0)																								
Horizontal Reinforcement	$\begin{array}{r} \hline \text { Block } \\ 12{ }^{\prime \prime} \text { a } \end{array}$	$\begin{aligned} & \text { eight of } \\ & \text { nd 18" } \end{aligned}$	15 M @	300	(12)	15M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)									
	$\begin{array}{r} \text { Block } \\ \text { of } \end{array}$	$\begin{aligned} & \text { Height } \\ & \hline 16^{\prime \prime} \\ & \hline \end{aligned}$	15M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15M @	300	(12)	15 M @	300	(12)	15M @	300	(12)	15 M @	300	(12)

## NOTES

 wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.
2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of $480 \mathrm{~kg} / \mathrm{m} 3$.
3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.
4. Provide 3 horizontal bars in every two rows of $18^{\prime \prime}$ high block to achieve an average spacing of $12^{\prime \prime}$ o.c. where $12^{\prime \prime}$ spacing o.c. is specified for horizontal bars, as shown in Detail A.4.
5. Provide 4 horizontal bars in every three rows of $16^{\prime \prime}$ high block to achieve an average spacing of $12^{\prime \prime}$ o.c. where $12^{\prime \prime}$ spacing o.c. is specified for horizontal bars, as shown in Detail A.5.

Build Anything Better.

## LOGIX ${ }^{\oplus}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table B.4.2. - Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $1.2<\mathrm{Sa}(0.2) \leq 1.75$ and Hourly Wind Pressure, $q_{1 / 50} \leq 1.05 k P a$, for ICF Walls with 8 " Tie Spacing

Wall Height   $\mathrm{m}_{\mathrm{ft}}$   ft	Backfill Height m (ft)		Vertical Steel (Size and Spacing)																							
			$480 \mathrm{~kg} / \mathrm{m} 3$ (30 pcf) $\quad$ Backfill Equivale												nt Fluid Density $720 \mathrm{~kg} / \mathrm{m3}$ (45 pcf)											
			150 mm ( (6") Wall			200 mm ( $8^{\prime \prime}$ ) Wall			250 mm (10") Wall			300 mm ( $12^{\prime \prime}$ ) Wall			150 mm ( (6") Wall			200 mm ( $8^{\prime \prime}$ ) Wall			250 mm ( 101 ) Wall			300 mm ( 12 ") Wall		
$\begin{aligned} & 2.44 \\ & (8.0) \end{aligned}$	1.22	(4.0)	10M@	200	(8)	15M@	600	(24)	10M@	400	(16)	10M@	400	(16)	15M@	400	(16)	15M @	600	(24)	10M @	400	(16)	10M @	400	(16)
	1.53	(5.0)	15M@	200	(8)	15M@	400	(16)	10M @	200	(8)	10M@	200	(8)	15M @	200	(8)	15M @	400	(16)	10M @	200	(8)	10M @	200	(8)
	1.83	(6.0)	15M@	200	(8)	15M@	400	(16)	15M @	400	(16)	10M@	200	(8)	15M@	200	(8)	15M@	400	(16)	15M @	400	(16)	10M @	200	(8)
	2.13	(7.0)				15M@	200	(8)	15M@	400	(16)	15M@	400	(16)				15M @	200	(8)	15M @	400	(16)	15M @	400	(16)
	2.44	(8.0)				15M @	200	(8)	15M @	200	(8)	15M@	400	(16)				15M @	200	(8)	15M @	200	(8)	15M @	400	(16)
$\begin{aligned} & 2.74 \\ & (9.0) \end{aligned}$	1.22	(4.0)	10M@	200	(8)	15M@	600	(24)	10M @	400	(16)	10M@	400	(16)	10M@	200	(8)	15M @	600	(24)	10M @	400	(16)	10M @	400	(16)
	1.53	(5.0)	15M @	200	(8)	15M @	400	(16)	10M @	200	(8)	10M@	200	(8)	15M @	200	(8)	15M @	400	(16)	10M @	200	(8)	15M @	600	(24)
	1.83	(6.0)	15M@	200	(8)	15M @	200	(8)	15M @	400	(16)	10M @	200	(8)				15M @	200	(8)	15M @	400	(16)	15M @	400	(16)
	2.13	(7.0)				15M@	200	(8)	15M@	200	(8)	15M@	400	(16)				15M @	200	(8)	15M @	200	(8)	15M @	400	(16)
	2.44	(8.0)				15M @	200	(8)	15M@	200	(8)	15M@	200	(8)				15M@	200	(8)	15M @	200	(8)	15M @	200	(8)
	2.74	(9.0)							15M @	200	(8)	15M@	200	(8)							15M @	200	(8)	15M @	200	(8)
$\begin{gathered} 3.05 \\ (10.0) \end{gathered}$	1.22	(4.0)	10M@	200	(8)	15M @	600	(24)	10M @	400	(16)	10M @	400	(16)	10M @	200	(8)	15M @	600	(24)	10M @	400	(16)	10M @	400	(16)
	1.53	(5.0)	15M@	200	(8)	15M@	400	(16)	10M@	200	(8)	15M@	600	(24)	15M @	200	(8)	15M @	400	(16)	10M @	200	(8)	15M @	600	(24)
	1.83	(6.0)				15M@	200	(8)	15M@	400	(16)	15M@	400	(16)				15M @	200	(8)	15M @	400	(16)	15M @	400	(16)
	2.13	(7.0)				15M@	200	(8)	15M @	200	(8)	15M@	400	(16)				15M@	200	(8)	15M @	200	(8)	15M @	400	(16)
	2.44	(8.0)							15M@	200	(8)	15M@	200	(8)							15M @	200	(8)	15M @	200	(8)
	2.74	(9.0)							15M @	200	(8)	15M@	200	(8)										15M @	200	(8)
	3.05	(10.0)										15M@	200	(8)										15M @	200	(8)
$\begin{aligned} & 3.35 \\ & (11.0) \end{aligned}$	1.22	(4.0)	10M@	200	(8)	15M@	600	(24)	10M@	400	(16)	10M@	400	(16)	10M@	200	(8)	15M @	600	(24)	10M @	400	(16)	10M @	400	(16)
	1.53	(5.0)	15M@	200	(8)	15M @	400	(16)	10M @	200	(8)	15M@	600	(24)	15M @	200	(8)	15M @	400	(16)	15M @	400	(16)	10M @	200	(8)
	1.83	(6.0)				15M@	200	(8)	15M @	400	(16)	15M@	400	(16)				15M @	200	(8)	15M @	200	(8)	15M @	400	(16)
	2.13	(7.0)				15M@	200	(8)	15M @	200	(8)	15M@	200	(8)				15M @	200	(8)	15M @	200	(8)	15M @	200	(8)
	2.44	(8.0)							15M@	200	(8)	15M@	200	(8)							15M @	200	(8)	15M @	200	(8)
	2.74	(9.0)										15M@	200	(8)										15M @	200	(8)
	3.05	(10.0)										15M@	200	(8)												
	3.35	(11.0)			,					,		$\square$									,					
	1.22	(4.0)	10M @	200	(8)	15M@	600	(24)	10M @	400	(16)	10M@	400	(16)	10M@	200	(8)	10M@	200	(8)	10M @	400	(16)	10M@	400	(16)
	1.53	(5.0)	15M@	200	(8)	15M@	400	(16)	10M @	200	(8)	15M@	600	(24)	15M@	200	(8)	15M@	400	(16)	15M @	400	(16)	10M @	200	(8)
	1.83	(6.0)				15M @	200	(8)	15M @	200	(8)	15M@	400	(16)				15M @	200	(8)	15M @	200	(8)	15M @	400	(16)
	2.13	(7.0)							15M@	200	(8)	15M@	200	(8)							15M @	200	(8)	15M @	200	(8)
	2.44	(8.0)										15M@	200	(8)										15M @	200	(8)
	2.74	(9.0)										15M@	200	(8)												
	3.05	(10.0)																								
	3.35	(11.0)																								
	3.66	(12.0)																								
Horizontal Reinforcement	$\begin{array}{\|c} \hline \text { BlockH } \\ 122^{2} \text { ar } \\ \hline \end{array}$	$\begin{aligned} & \text { teight of } \\ & \text { nd } 18^{\prime \prime} \\ & \hline \end{aligned}$	15M @	300	(12)																					
	$\begin{array}{r} \text { Bloar } \\ \hline \text { Bl } \\ \text { of } \end{array}$	Height   $16^{\prime \prime}$	15M @	300	(12)	15M@	300	(12)	15M @	300	(12)	15M @	300	(12)												

## NOTES

1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20 MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.
2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of $480 \mathrm{~kg} / \mathrm{m} 3$.
3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.
4. Provide 3 horizontal bars in every two rows of $18^{\prime \prime}$ high block to achieve an average spacing of $12^{\prime \prime}$ o.c. where $12^{\prime \prime}$ spacing o.c. is specified for horizontal bars, as shown in Detail A.4.
5. Provide 4 horizontal bars in every three rows of $16^{\prime \prime}$ high block to achieve an average spacing of 12 " o.c. where 12 " spacing o.c. is specified for horizontal bars, as shown in Detail A.5.

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table B.4.2. Continued- Below Grade Wall Distributed Reinforcement for Seismic Zone Classification, $1.2<\mathrm{Sa}(\mathbf{0 . 2})$ $\leq 1.75$ and Hourly Wind Pressure, $q_{1 / 50} \leq 1.05 \mathrm{kPa}$, for ICF Walls with 8" Tie Spacing

Wall Height m (ft)	Backfill Height m (ft)		Vertical Steel (Size and Spacing)																							
			$960 \mathrm{~kg} / \mathrm{m} 3(60 \mathrm{pcf}) \quad$ Backfill Equivale												俍 $1200 \mathrm{~kg} / \mathrm{m} 3$ (75 pcf)											
			150 mm ( $6^{\prime \prime}$ ) Wall			200 mm (8") Wall			250 mm (10") Wall			300 mm (12") Wall			$150 \mathrm{~mm}\left(6^{\text {" }}\right.$ ) Wall			200 mm (8") Wall			250 mm (10") Wall			300 mm (12") Wall		
$\begin{aligned} & 2.44 \\ & (8.0) \end{aligned}$	1.22	(4.0)	15M @	400	(16)	15M @	600	(24)	10M @	400	(16)	10M @	400	(16)	15M @	400	(16)	10M @	200	(8)	10M @	400	(16)	10M @	400	(16)
	1.53	(5.0)	15M @	200	(8)	15 M @	400	(16)	10 M @	200	(8)	10M @	200	(8)	15M @	200	(8)	15M @	400	(16)	10M @	200	(8)	15M @	600	(24)
	1.83	(6.0)	15 M @	200	(8)	15 M @	200	(8)	15M @	400	(16)	10M @	200	(8)	15M @	200	(8)	15 M @	200	(8)	15M @	400	(16)	15 M @	400	(16)
	2.13	(7.0)				15 M @	200	(8)	15M @	200	(8)	15M @	400	(16)				15M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	2.44	(8.0)				15M @	200	(8)	15M @	200	(8)	15M @	400	(16)				15M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
$\begin{aligned} & 2.74 \\ & (9.0) \end{aligned}$	1.22	(4.0)	10M @	200	(8)	10 M @	200	(8)	10M @	400	(16)	10M @	400	(16)	10M @	200	(8)	10M @	200	(8)	10M @	400	(16)	10 M @	400	(16)
	1.53	(5.0)	15M @	200	(8)	15M @	400	(16)	10M @	200	(8)	15 M @	600	(24)	15M @	200	(8)	15M @	400	(16)	15M @	400	(16)	10M @	200	(8)
	1.83	(6.0)				15M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)				15M @	200	(8)	15M @	400	(16)	15 M @	400	(16)
	2.13	(7.0)				15M @	200	(8)	15 M @	200	(8)	15M @	400	(16)				15M @	200	(8)	15M @	200	(8)	15M @	400	(16)
	2.44	(8.0)							15 M @	200	(8)	15 M @	200	(8)							15M @	200	(8)	15 M @	200	(8)
	2.74	(9.0)							15 M @	200	(8)	15M @	200	(8)							15M @	200	(8)	15M @	200	(8)
$\begin{gathered} 3.05 \\ (10.0) \end{gathered}$	1.22	(4.0)	10 M @	200	(8)	10M @	200	(8)	10M @	400	(16)	10M @	400	(16)	10M @	200	(8)	10M @	200	(8)	15M @	600	(24)	10 M @	400	(16)
	1.53	(5.0)	15 M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10M@	200	(8)	15 M @	200	(8)	15 M @	400	(16)	15M @	400	(16)	10M @	200	(8)
	1.83	(6.0)				15M @	200	(8)	15M @	200	(8)	15M @	400	(16)				15M @	200	(8)	15M @	200	(8)	15M @	400	(16)
	2.13	(7.0)				15M @	200	(8)	15M @	200	(8)	15M @	200	(8)				15M @	200	(8)	15M @	200	(8)	15M @	200	(8)
	2.44	(8.0)							15 M @	200	(8)	15M @	200	(8)							15M @	200	(8)	15M @	200	(8)
	2.74	(9.0)										15M @	200	(8)										15M @	200	(8)
	3.05	(10.0)										15M @	200	(8)												
$\begin{aligned} & 3.35 \\ & (11.0) \end{aligned}$	1.22	(4.0)	10M @	200	(8)	10M @	200	(8)	10M @	400	(16)	10 M @	400	(16)	10M @	200	(8)	10 M @	200	(8)	15M @	600	(24)	10M @	400	(16)
	1.53	(5.0)	15M @	200	(8)	15M @	400	(16)	15M @	400	(16)	10 M @	200	(8)	15M @	200	(8)	15M @	400	(16)	15 M @	400	(16)	10 M @	200	(8)
	1.83	(6.0)				15 M @	200	(8)	15M @	200	(8)	15M @	400	(16)				15M @	200	(8)	15M @	200	(8)	15 M @	400	(16)
	2.13	(7.0)							15 M @	200	(8)	15M @	200	(8)							15M @	200	(8)	15M @	200	(8)
	2.44	(8.0)										15M @	200	(8)										15M @	200	(8)
	2.74	(9.0)										15M @	200	(8)												
	3.05	(10.0)																								
	3.35	(11.0)																								
$\begin{gathered} 3.66 \\ (12.0) \end{gathered}$	1.22	(4.0)	10M @	200	(8)	10M@	200	(8)	10 M @	400	(16)	10M @	400	(16)	10 M @	200	(8)	10M@	200	(8)	15M @	600	(24)	10 M @	400	(16)
	1.53	(5.0)	15M @	200	(8)	15 M @	400	(16)	15 M @	400	(16)	10M @	200	(8)	15M @	200	(8)	15 M @	400	(16)	15M@	400	(16)	10 M @	200	(8)
	1.83	(6.0)				15M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)				15M @	200	(8)	15 M @	200	(8)	15 M @	400	(16)
	2.13	(7.0)							15M @	200	(8)	15M @	200	(8)							15M @	200	(8)	15M @	200	(8)
	2.44	(8.0)										15M @	200	(8)										15 M @	200	(8)
	2.74	(9.0)																								
	3.05	(10.0)																								
	3.35	(11.0)																								
	3.66	(12.0)																								
Horizontal Reinforcement	$\begin{gathered} \text { Block } \\ 122^{\prime \prime} \mathrm{ar} \end{gathered}$	eight of   nd $18{ }^{\prime \prime}$	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15M @	300	(12)	15M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)
	$\begin{array}{r} \text { Block } \\ \text { of } \end{array}$	$\begin{aligned} & \text { Height } \\ & 16^{\prime \prime} \\ & \hline \end{aligned}$	15M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)

## NOTES

[^10]Build Anything Better. ${ }^{\text {m }}$

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table A.1.1. Above Grade Wall Distributed Reinforcement for Seismic Zone Classification, Sa,ICF $\leq 0.2$ and Hourly Wind Pressure, $q_{1 / 50} \leq 1.05$ for ICF Walls with 6"Tie Spacing

Wall Height		Distributed Vertical Reinforcement (Size and Spacing)											
m	(ft)	150 mm (6") Wall			200 mm (8") Wall			250 mm (10") Wall			300 mm (12") Wall		
Hourly Wind Pressure $\mathrm{q}_{1 / 50} \leq \mathbf{0 . 5} \mathbf{~ k P a}$													
2.44	(8)	10 M @	600	(24)	10 M @	750	(30)	10 M @	900	(36)	10 M @	1200	(48)
2.75	(9)	10 M @	600	(24)	10 M @	750	(30)	10 M @	900	(36)	10 M @	1200	(48)
3.05	(10)	15 M @	1050	(42)	10 M @	750	(30)	10 M @	900	(36)	10 M @	1200	(48)
3.66	(12)	15 M @	750	(30)	15 M @	1050	(42)	10 M @	600	(24)	10 M @	1200	(48)
4.27	(14)	15 M @	450	(18)	15 M @	750	(30)	15 M @	1050	(42)	10 M @	1200	(48)
4.88	(16)	15 M @	300	(12)	15 M @	600	(24)	15 M @	750	(30)	10 M @	900	(36)

Hourly Wind Pressure $q_{1 / 50} \leq 0.75 \mathbf{k P a}$

2.44	(8)	15 M @	1050	(42)	10 M @	750	(30)	10 M @	900	(36)	10 M @	1200	(48)
2.75	(9)	15 M @	750	(30)	10 M @	600	(24)	10 M @	750	(30)	10 M @	1200	(48)
3.05	(10)	15 M @	600	(24)	15 M @	1050	(42)	10 M @	600	(24)	10 M @	1200	(48)
3.66	(12)	15 M @	300	(12)	15 M @	750	(30)	15 M @	900	(36)	10 M @	1200	(48)
4.27	(14)	15 M @	300	(12)	15 M @	450	(18)	15 M @	750	(30)	10 M @	900	(36)
4.88	(16)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	15 M @	900	(36)

Hourly Wind Pressure $q_{1 / 50} \leq 1.05$ kPa


## NOTES

2. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300 mm ( $12^{\prime \prime}$ ) walls. Place each layer as shown in the rebar placement drawing.
3. This table is to be used in conjunction with the "Design Limitations."
4. Bolded data indicates reinforcing for ground floor concrete walls only. Second floor concrete walls to be limited in height to 3.0 m ( 10 '- 0 ").

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table A.1.2. Above Grade Wall Distributed Reinforcement for Seismic Zone Classification, $\mathrm{S}_{\mathrm{a}, \mathrm{IcF}} \leq 0.2$ and Hourly Wind Pressure, $q_{1 / 50} \leq 1.05$ for Walls with 8"Tie Spacing

Wall Height		Distributed Vertical Reinforcement (Size and Spacing)			
m	(ft)	$150 \mathrm{~mm}\left(6^{\prime \prime}\right)$ Wall	$200 \mathrm{~mm}\left(8^{\prime \prime}\right)$ Wall	$250 \mathrm{~mm}\left(10^{\prime \prime}\right)$ Wall	$300 \mathrm{~mm}\left(12^{\prime \prime}\right)$ Wall

Hourly Wind Pressure $q_{1 / 50} \leq 0.5 \mathrm{kPa}$

2.44	(8)	10 M @	600	(24)	10 M @	800	(32)	10 M @	1000	(40)	10 M @	1200	(48)
2.75	(9)	10 M @	600	(24)	10 M @	800	(32)	10 M @	1000	(40)	10 M @	1200	(48)
3.05	(10)	15 M @	1000	(40)	10 M @	600	(24)	10 M @	800	(32)	10 M @	1200	(48)
3.66	(12)	15 M @	600	(24)	15 M @	1000	(40)	10 M @	600	(24)	10 M @	1200	(48)
4.27	(14)	15 M @	400	(16)	15 M @	800	(32)	15 M @	1000	(40)	10 M @	1200	(48)
4.88	(16)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	10 M @	1000	(40)

Hourly Wind Pressure $q_{1 / 50} \leq 0.75$ kPa

2.44	(8)	15 M @	1200	(48)	10 M @	800	(32)	10 M @	1200	(48)	10 M @	1200	(48)
2.75	(9)	15 M @	800	(32)	10 M @	800	(32)	10 M @	800	(32)	10 M @	1200	(48)
3.05	(10)	15 M @	800	(32)	15 M @	1200	(48)	10 M @	800	(32)	10 M @	1200	(48)
3.66	(12)	15 M @	400	(16)	15 M @	800	(32)	15 M @	1200	(48)	10 M @	1200	(48)
4.27	(14)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)	10 M @	1200	(48)
4.88	(16)	15 M @	300	(12)	15 M @	400	(16)	15 M @	600	(24)	15 M @	800	(32)

Hourly Wind Pressure $\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$

2.44	(8)	15 M @	600	(24)	15 M @	1000	(40)	10 M @	600	(24)	10 M @	1200	(48)
2.75	(9)	15 M @	600	(24)	15 M @	800	(32)	15 M @	1200	(48)	10 M @	1200	(48)
3.05	(10)	15 M @	400	(16)	15 M @	800	(32)	15 M @	800	(32)	10 M @	800	(32)
3.66	(12)	15 M @	300	(12)	15 M @	400	(16)	15 M @	600	(24)	10 M @	800	(32)
4.27	(14)	15 M @	300	(12)	15 M @	400	(16)	15 M @	400	(16)	15 M @	800	(32)
4.88	(16)				15 M @	300	(12)	15 M @	400	(16)	15 M @	600	(24)
Horizontal Reinforcement	Block Height of 12 " and $18{ }^{\prime \prime}$	10 M @	900	(36)									
	Block Height of 16"	10 M @	800	(32)									

## NOTES

1. $\mathrm{S}_{\mathrm{a}, \text { ICF }}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix A .

Provide two layers of the indicated horizontal and vertical distributed steel specified for 300 mm (12") walls. Place each layer as shown in the rebar placement drawing.
This table is to be used in conjunction with the "Design Limitations."
Bolded data indicates reinforcing for ground floor concrete walls only. Second floor concrete walls to be limited in height to 3.0 m ( $10^{\prime}-0^{\prime \prime}$ ).
Alternating vertical bar spacing of 8 " o.c. and $16^{\prime \prime}$ o.c. may be used to achieve an average spacing of $12^{\prime \prime}$ o.c. where $12^{\prime \prime}$ o.c. spacing is specified for vertical bars, as shown in Detail A. 5 .

Build Anything Better."

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table A.2.1. Above Grade Wall Distributed Reinforcement for Seismic Zone Classification, $S_{a, I c F} \geq 0.2$ and Hourly Wind Pressure, $q_{1 / 50} \leq 1.05$ for ICF Walls with 6 "Tie Spacing

	ight				stribut	rtic	info	ment (	and	acin			
m	(ft)	150	(6")		200	(8")		250	(10'		300	12"	
Seismic zone class	on, $\mathrm{S}_{\mathrm{a}, \mathrm{ICF}} \leq 0.4$												
2.44	(8)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	450	(18)
2.75	(9)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	450	(18)
3.05	(10)	15 M @	450	(18)	10 M @	300	(12)	10 M @	300	(12)	10 M @	450	(18)
3.66	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	600	(24)	10 M @	450	(18)
4.27	(14)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	450	(18)
4.88	(16)				15 M @	300	(12)	15 M @	300	(12)	10 M @	450	(18)
Horizontal Reinforcement	Block Height of $12^{\prime \prime}$ and 18"	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	10 M @	450	(18)
	Block Height of 16 "	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)

Seismic zone classification, $\mathrm{S}_{\mathrm{a}, \mathrm{lcF}} \leq \mathbf{0 . 7}$

2.44	(8)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
2.75	(9)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
3.05	(10)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
3.66	(12)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
4.27	(14)	15 M @	300	(12)	15 M @	450	(18)	15 M @	450	(18)	10 M @	300	(12)
4.88	(16)				15 M @	300	(12)	15 M @	450	(18)	10 M @	300	(12)
Horizontal Reinforcement	Block Height of 12 "and 18"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
	Block Height of 16"	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)

Seismic zone classification, $\mathrm{S}_{\mathrm{a}, \mathrm{ICF}} \leq 1.05$

2.44	(8)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
2.75	(9)	15 M @	300	(12)	15M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
3,05	(10)	15M@	300	(12)	15M@	300	(12)	15 M @	300	(12)	10M@	300	(12)
3.66	(12)	15 M @	300	(12)	15M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
4.27	(14)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
4.88	(16)				15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
Horizontal Reinforcement	Block Height of 12 " and 18"	15 M @	300	(12)									
	Block Height of 16"	15 M @	300	(12)									

## NOTES

[^11]Build Anything Better."

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table A.2.2. Above Grade Wall Distributed Reinforcement for Seismic Zone Classification, $\mathrm{S}_{\mathrm{a}, \mathrm{ICF}} \geq 0.2$ and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 1.05$ for ICF Walls with $\mathbf{8 "}$ Tie Spacing

Wall Height		Distributed Vertical Reinforcement (Size and Spacing)			
m		$(\mathrm{ft})$	$150 \mathrm{~mm}\left(6{ }^{\prime \prime}\right)$ Wall	$200 \mathrm{~mm}(8 ")$ Wall	$250 \mathrm{~mm}(10 ")$ Wall

Seismic zone classification, $\mathrm{S}_{\mathrm{a}, \mathrm{ICF}} \leq 0.4$

2.44	(8)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	400	(16)
2.75	(9)	10 M @	300	(12)	10 M @	300	(12)	10 M @	300	(12)	10 M @	400	(16)
3.05	(10)	15 M @	400	(16)	10 M @	300	(12)	10 M @	300	(12)	10 M @	400	(16)
3.66	(12)	15 M @	300	(12)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)
4.27	(14)	15 M @	300	(12)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)
4.88	(16)				15 M @	300	(12)	15 M @	400	(16)	10 M @	400	(16)
Horizontal Reinforcement	Block Height of 12" and 18"	15 M @	450	(18)	15 M @	450	(18)	15 M @	450	(18)	10 M @	450	(18)
	Block Height of 16"	15 M @	400	(16)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)

Seismic zone classification, $\mathrm{S}_{\mathrm{a}, \mathrm{ICF}} \leq 0.7$

2.44	(8)	15 M @	300	(12)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)
2.75	(9)	15 M @	300	(12)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)
3.05	(10)	15 M @	300	(12)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)
3.66	(12)	15 M @	300	(12)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)
4.27	(14)	15 M @	300	(12)	15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)
4.88	(16)				15 M @	400	(16)	15 M @	400	(16)	10 M @	400	(16)
Horizontal Reinforcement	Block Height of 12 " and 18 "	15 M @	300	(12)									
	Block Height of 16"	15 M @	300	(12)									

Seismic zone classification, $\mathrm{S}_{\mathrm{a}, \mathrm{ICF}} \leq 1.05$

2.44	(8)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
2.75	(9)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
1 3,05	(10)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
V 3.66	(12)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
4.27	(14)	15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)	10 M @	300	(12)
4.88	(16)				15 M @	300	(12)	15 M @	300	(12)	15 M @	300	(12)
Horizontal Reinforcement	Block Height of 12" and 18"	15 M @	300	(12)									
	Block Height of 16"	15 M @	300	(12)									

## NOTES

1. $\quad \mathrm{S}_{\text {a,ICF }}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix A.
2. This table is to be used in conjunction with the "Design Limitations."
3. Bolded data indicates reinforcing for ground floor concrete walls only. Second floor concrete walls to be limited in height to $3.0 \mathrm{~m}\left(10^{\prime}-0^{\prime \prime}\right)$.
4. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300 mm ( 12 ") walls. Place each layer as shown in the rebar placement drawing.
5. Alternating horizontal bar spacing of 12 " o.c. and 24 " o.c. may be used to achieve an average spacing of 18 " o.c. where 18 " o.c. spacing is specified for horizontal bars, as shown in Detail A.3.

Provide 3 horizontal bars in every two rows of $18^{" \prime}$ high block to achieve an average spacing of 12 " o.c. where 12 " spacing o.c. is specified for horizontal bars, as shown in Detail A.4.
7. Provide 4 horizontal bars in every three rows of 16 " high block to achieve an average spacing of $12^{\prime \prime}$ o.c. where 12 " spacing o.c. is specified for horizontal bars, as shown in Detail A. 5 .
8. Alternating vertical bar spacing of 8 " o.c. and 16 " o.c. may be used to achieve an average spacing of 12 " o.c. where 12 " o.c. spacing is specified for vertical bars, as shown in Detail A.6.

Build Anything Better.

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table A.3. Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $\mathrm{S}_{\mathrm{a}, \mathrm{ClF}} \leq 0.2$ and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 0.5 \mathrm{kPa}$ (in a Building Without Walkout Basement)

Wall Height		Number of Concentrated Vertical 10M Reinforcing Bars at End of Each Shear Wall											
		Seismic Zone Classification											
m	(ft)	$\mathrm{S}_{\mathrm{a}, \text { ICF }} \leq 0.085$				$\mathrm{S}_{\mathrm{a}, \mathrm{ICF}} \leq 0.145$				$\mathrm{S}_{\mathrm{a}, \mathrm{lCF}} \leq 0.2$			
Second Floor Walls of Two Story ICF Structure Supporting Wood Frame Roof													
		Number and length of shear walls provided											
		$1 \times 8$ '0"	$2 \times 4{ }^{\prime}-0^{\prime \prime}$	$3 \times 2$ '-8"	$4 \times 2-00$	$1 \times 10{ }^{\prime}-0^{\prime \prime}$	$2 \times 5{ }^{\prime \prime} 4^{\prime \prime}$	$3 \times 3$ '6"	$4 \times 2$-8"	$1 \times 12{ }^{\prime}-0{ }^{\prime \prime}$	$2 \times 7$ '0"	$3 \times 5{ }^{\prime}-0{ }^{\prime \prime}$	$4 \times 3$-8"
2.44	(8)	2	2	3	3	2	2	3	3	2	2	2	3
2.75	(9)	2	3	3	3	2	3	3	3	2	3	3	3
3.05	(10)	2	3	4	4	2	4	4	4	2	3	3	4
Main Floor Walls of One Story ICF Structure Supporting Wood Frame Roof													
		Number and length of shear walls provided											
		$1 \times 8$-0"	$2 \times 4-0{ }^{\prime \prime}$	$3 \times 2$-8"	$4 \times 2-0{ }^{\prime \prime}$	$1 \times 10^{\prime}-0^{\prime \prime}$	$2 \times 5-4{ }^{\prime \prime}$	$3 \times 3$-6"	$4 \times 2{ }^{\prime}-8{ }^{\prime \prime}$	$1 \times 12{ }^{\prime}-0 \mid$	$2 \times 7$-0"	$3 \times 51-0 \mid$	$4 \times 3{ }^{\prime}-8{ }^{\prime \prime}$
2.44	(8)	2	2	2	2	2	2	2	3	2	2	2	2
2.75	(9)	2	2	3	3	2	2	3	3	2	2	2	3
3.05	(10)	2	3	3	3	2	3	3	4	2	2	3	3
3.66	(12)	2	3	4		2	4	4	4	2	3	4	4
4.27	(14)	3	4			3	5	5	6	3	4	5	5
4.88	(16)	3	5			3	5	6		3	4	5	6
Main Floor Walls of Two Story Structure Supporting 2nd Story Wood Framed Walls, Floor and Roof													
		Number and length of shear walls provided											
		$1 \times 10{ }^{\prime} 0$	$2 \times 6{ }^{\prime}-0$	$3 \times 4{ }^{\prime}-0{ }^{\prime \prime}$	$4 \times 3$-0"	$1 \times 12^{\prime}-6{ }^{\prime \prime}$	$2 \times 7$-0"	$3 \times 5{ }^{\prime}-0$	$4 \times 4{ }^{\prime}-0{ }^{\prime \prime}$	$1 \times 17{ }^{\prime}-0 \mid$	$2 \times 10^{\prime}-0{ }^{\prime \prime}$	$3 \times 6{ }^{\prime}-8$ "	$4 \times 5{ }^{\prime}-0{ }^{\prime \prime}$
2.44	(8)	2	2	3	3	2	3	3	3	2	2	3	3
2.75	(9)	2	2	3	3	2	3	4	4	2	2	3	4
3.05	(10)	2	3	4	4	2	4	4	5	2	3	4	5
3.66	(12)	3	3	4	5	3	4	5	5	2	3	4	5
4.27	(14)	3	4	5	6	3	5	6	6	2	4	5	6
4.88	(16)	3	4	5		3	5	6	6	2	4	5	6
Main Floor Walls of Two Story ICF Structure Supporting Wood Frame Floors and Roof													
		Number and length of shear walls provided											
		$1 \times 12{ }^{\prime}-0^{\prime \prime}$	$2 \times 6{ }^{\prime}-8{ }^{\prime \prime}$	$3 \times 4{ }^{\prime}-4^{\prime \prime}$	$4 \times 3{ }^{\prime}-4{ }^{\prime \prime}$	$1 \times 16{ }^{\prime \prime} 0^{\prime \prime}$	$2 \times 9$ 9-0"	$3 \times 6{ }^{\prime}-4{ }^{\prime \prime}$	$4 \times 4{ }^{\prime}-6{ }^{\prime \prime}$	$1 \times 21^{\prime}-0^{\prime \prime}$	$2 \times 12$ '4"	$3 \times 8{ }^{\prime}-6{ }^{\prime \prime}$	$4 \times 6{ }^{\prime}-6{ }^{\prime \prime}$
2.44	(8)	2	3	4	4	2	3	4	5	2	2	3	4
) 2.75	(9)	2	3	4	5	2	4	4	5	2	3	4	4
$1{ }^{1}$	(10)	2	4	4	5	2	4	- 4	5	2	3	4	4
3.66	(12)	3	4	5	6	2	4	5	6	2	3	4	5
4.27	(14)	3	5	6		3	5	6		2	4	5	6
4.88	(16)	3	5			3	5	6		2	4	5	6
Vertical Reinforcement	$\begin{gathered} 6^{\prime \prime} \text { ICF } \\ \text { Tie Spacing } \end{gathered}$	As per table A.1.1.				As per table A.1.1.				As per table A.1.1.			
	8"ICF Tie Spacing	As per table A.1.2.				As per table A.1.2.				As per table A.1.2.			
Horizontal Reinforcement	6" ICF   Tie Spacing	10 M @		450	(18)	10 M @		450	(18)	10 M @		450	(18)
	8"ICF   Tie Spacing	10 M @		400	(16)	10 M @		400	(16)	10 M @		400	(16)

NOTES

1. $\quad S_{\text {alicF }}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix A
2. This table is to be used in conjunction with the "Design Limitations".

Provide two layers of the indicated horizontal and vertical distributed steel specified for 300 mm ( 12 ") walls. Place each layer as shown in the rebar placement drawing.
All four sides of the building are to have a minimum number and length of shear walls that conforms to this table.
Use Table A. 6 for buildings that do not meet the required wall length of this table.
Use the left-most column that meets the minimum number and length of shear walls to determine the minimum required concentrated reinforcement
Shaded cells indicate that the minimum bars required beside all windows and openings, as per the "Design Limitations", are adequate.
All required number of 10 M bars may be replaced by an equivalent number of 15 M bars as given in the "Design Limitations"
9. All concentrated reinforcement is to be continues to the bottom of the foundation wall. Provide lap splices as required.
10. Concentrated reinforcement is to be placed in accordance with Bar Placement Detail.

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table A. 4 - Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $\mathrm{S}_{\mathrm{a}, \mathrm{ClF}} \leq 0.2$ and Hourly Wind Pressure, $0.5 \mathrm{kPa}<\mathrm{q}_{1 / 50} \leq 0.75 \mathrm{kPa}$ (in a Building Without Walkout Basement)

Wall Height		Number of Concentrated Vertical 10M Reinforcing Bars at End of Each Shear Wall											
		Seismic Zone Classification											
m	(ft)	$\mathrm{S}_{\mathrm{a}, \text { ICF }} \leq 0.085$				$\mathrm{S}_{\mathrm{a}, \mathrm{ICF}} \leq 0.145$				$\mathrm{S}_{\mathrm{a}, \mathrm{ICF}} \leq 0.2$			
Second Floor Walls of Two Story ICF Structure Supporting Wood Frame Roof													
		Number and length of shear walls provided											
		$1 \times 8$-0"	$2 \times 4{ }^{\prime}-0{ }^{\prime \prime}$	$3 \times 2$ '-8"	$4 \times 2$-0"	$1 \times 10^{\prime}-0{ }^{\prime \prime}$	$2 \times 5{ }^{\prime}-0$	$3 \times 3$ '6"	$4 \times 2$-8"	$1 \times 11^{\prime}-0 \mid$	$2 \times 6{ }^{\prime \prime} 8^{\prime \prime}$	$3 \times 4{ }^{\prime} 8^{\prime \prime}$	$4 \times 3{ }^{\prime}-6{ }^{\prime \prime}$
2.44	(8)	2	3	3	3	2	3	3	3	2	2	3	3
2.75	(9)	2	3	3	3	2	3	3	4	2	2	3	3
3.05	(10)	2	3	4	4	2	4	4	5	3	3	4	4
Main Floor Walls of One Story ICF Structure Supporting Wood Frame Roof													
		Number and length of shear walls provided											
		$1 \times 8{ }^{\prime}-0{ }^{\prime \prime}$	$2 \times 4{ }^{\prime}-0$	$3 \times 2$ '-8"	$4 \times 2$-0"	$1 \times 10^{\prime}-0{ }^{\prime \prime}$	$2 \times 5{ }^{\prime}-0 \mid$	$3 \times 3{ }^{\prime}-6{ }^{\prime \prime}$	$4 \times 2$ '-8"	$1 \times 11^{\prime}-0^{\prime \prime}$	$2 \times 6{ }^{\prime \prime} 8^{\prime \prime}$	$3 \times 4$ '-8"	$4 \times 3{ }^{\prime}-6^{\prime \prime}$
2.44	(8)	2	2	3	3	2	2	3	3	2	2	2	3
2.75	(9)	2	2	3	3	2	2	3	4	2	2	2	3
3.05	(10)	2	3	3	4	2	3	4	5	2	3	3	4
3.66	(12)	2	4	4		2	4	4	5	3	3	4	5
4.27	(14)	2	4			2	4	5	5	3	4	5	6
4.88	(16)	2	4			3	5	6		3	4	5	6
Main Floor Walls of Two Story Structure Supporting 2nd Story Wood Framed Walls, Floor and Roof													
		Number and length of shear walls provided											
		$1 \times 10{ }^{\prime} 0$	$2 \times 6{ }^{\prime}-0$	$3 \times 4{ }^{\prime}-0^{\prime \prime}$	$4 \times 3$ '-0"	$1 \times 12 \mathrm{C}-0 \mid$	$2 \times 6{ }^{\prime}-8{ }^{\prime \prime}$	$3 \times 5{ }^{\prime}-0{ }^{\prime \prime}$	4×4'-0"	$1 \times 16{ }^{\prime} 0^{\prime \prime}$	$2 \times 9$-0"	$3 \times 6{ }^{\prime}-8$	$4 \times 5{ }^{\prime}-0^{\prime \prime}$
2.44	(8)	2	3	3	4	2	4	4	4	2	3	3	4
2.75	(9)	2	3	3	4	2	4	4	4	2	3	3	4
3.05	(10)	2	3	4	4	2	4	4	5	2	3	4	5
3.66	(12)	2	3	4	5	3	5	5	6	2	4	4	6
4.27	(14)	2	4	4	5	3	5	5	6	2	4	4	6
4.88	(16)	2	4	4		3	5	6	6	2	4	4	6
Main Floor Walls of Two Story ICF Structure Supporting Wood Frame Floors and Roof													
		Number and length of shear walls provided											
		$1 \times 12^{\prime}-0{ }^{\prime \prime}$	$2 \times 6{ }^{\prime}-0^{\prime \prime}$	$3 \times 4{ }^{\prime}-4^{\prime \prime}$	$4 \times 3{ }^{\prime}-4^{\prime \prime}$	$1 \times 15{ }^{\prime}-0^{\prime \prime}$	$2 \times 9$ '0"	$3 \times 6{ }^{\prime}-0{ }^{\prime \prime}$	$4 \times 4$-0"	$1 \times 20{ }^{\prime \prime}$	$2 \times 11^{\prime}-0 \mid$	$3 \times 8.01$	$4 \times 6{ }^{\prime \prime} 4^{\prime \prime}$
2.44	(8)	2	4	- 4	4	3	3	4	-5	2	3	4	4
2.75	(9)	2	4	4	5	3	3		6	2	$3$		$4$
3.05	(10)	2	4	5	5	3	4	5	6	2	- 3	4	5
3.66	(12)	3	5	6	6	3	5	6		2	4	5	6
4.27	(14)	3	5	6	6	3	5	6		2	5	6	6
4.88	(16)	3	5	6		3	5	6		2	5	6	6
Vertical Reinforcement	$\begin{gathered} 6^{\prime \prime} \text { ICF } \\ \text { Tie Spacing } \end{gathered}$	As per table A.1.1.				As per table A.1.1.				As per table A.1.1.			
	$\begin{aligned} & \hline 8^{\prime \prime} \text { ICF } \\ & \text { Tie Spacing } \end{aligned}$	As per table A.1.2.				As per table A.1.2.				As per table A.1.2.			
Horizontal Reinforcement	$\begin{gathered} \text { 6" ICF } \\ \text { Tie Spacing } \end{gathered}$	10 M @		450	(18)	10 M @		450	(18)	10 M @		450	(18)
	$\begin{gathered} \text { 8" ICF } \\ \text { Tie Spacing } \end{gathered}$	10 M @		400	(16)	10 M @		400	(16)	10 M @		400	(16)

## NOTES

1. $S_{\mathrm{a}, \mathrm{CCF}}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix $A$.

This table is to be used in conjunction with the "Design Limitations".

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table A. 5 - Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $\mathrm{S}_{\mathrm{a}, \mathrm{ICF}} \leq 0.2$ and Hourly Wind Pressure, $0.75 \mathrm{kPa}<\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$ (in a Building Without Walkout Basement)

Wall Height		Number of Concentrated Vertical 10M Reinforcing Bars at End of Each Shear Wall											
		Seismic Zone Classification											
m	(ft)	$\mathrm{S}_{\text {a, ICF }} \leq 0.085$				$\mathrm{S}_{\mathrm{a}, \text { ICF }} \leq 0.145$				$\mathrm{S}_{\text {a, ICF }} \leq 0.2$			
Second Floor Walls of Two Story ICF Structure Supporting Wood Frame Roof													
		Number and length of shear walls provided											
		$1 \times 8$ '0"	$2 \times 4{ }^{\prime}-0$	$3 \times 2$-8"	$4 \times 2-00$	$1 \times 10{ }^{\prime}-0^{\prime \prime}$	$2 \times 5{ }^{\prime}-4{ }^{\prime \prime}$	$3 \times 3$-6"	$4 \times 2$-8"	$1 \times 12^{\prime}-0^{\prime \prime}$	$2 \times 7$ '0"	$3 \times 5{ }^{\prime}-0^{\prime \prime}$	$4 \times 3{ }^{\prime}-8{ }^{\prime \prime}$
2.44	(8)	2	3	4	4	2	3	3	4	2	3	3	4
2.75	(9)	2	3	4	4	2	3	4	4	3	3	4	5
3.05	(10)	2	4	4	5	2	3	4	5	3	3	4	5
Main Floor Walls of One Story ICF Structure Supporting Wood Frame Roof													
		Number and length of shear walls provided											
		$1 \times 8{ }^{\prime}-0^{\prime \prime}$	$2 \times 4{ }^{\prime} 0^{\prime \prime}$	$3 \times 2$-8"	$4 \times 2-0{ }^{\prime \prime}$	$1 \times 10^{\prime}-0^{\prime \prime}$	$2 \times 5-4{ }^{\prime \prime}$	$3 \times 3-6{ }^{\prime \prime}$	$4 \times 2$-8"	$1 \times 12^{\prime}-0^{\prime \prime}$	$2 \times 7$-0"	$3 \times 5{ }^{\prime}-0^{\prime \prime}$	$4 \times 3{ }^{\prime}-8{ }^{\prime \prime}$
2.44	(8)	2	2	3	3	2	2	3	3	2	2	3	3
2.75	(9)	2	3	3	3	2	3	3	4	2	3	3	4
3.05	(10)	2	3	3	4	2	3	4	4	2	3	4	4
3.66	(12)	2	3	4		2	3	4	5	2	3	4	5
4.27	(14)	2	3			2	4	5	5	2	4	4	6
4.88	(16)	2	4			2	4	5		2	4	5	
Main Floor Walls of Two Story Structure Supporting 2nd Story Wood Framed Walls, Floor and Roof													
		Number and length of shear walls provided											
		$1 \times 10{ }^{\prime} 0$	$2 \times 6{ }^{\prime}-0$	$3 \times 4{ }^{\prime}-0{ }^{\prime \prime}$	$4 \times 3$-0"	$1 \times 12^{\prime}-6{ }^{\prime \prime}$	$2 \times 7{ }^{\prime}-0$	$3 \times 5{ }^{\prime}-0{ }^{\prime \prime}$	$4 \times 4{ }^{\prime}-0{ }^{\prime \prime}$	$1 \times 17^{\prime}-0 \mid$	$2 \times 10{ }^{\prime}-0 \mid$	$3 \times 6{ }^{\prime}-8{ }^{\prime \prime}$	$4 \times 5{ }^{\prime}-0^{\prime \prime}$
2.44	(8)	2	3	4	4	2	4	4	5	2	3	4	4
2.75	(9)	2	3	4	4	2	4	5	5	2	3	4	5
3.05	(10)	2	3	4	5	2	4	5	5	2	3	4	5
3.66	(12)	2	3	4	5	2	4	5	6	2	3	4	5
4.27	(14)	2	4	5		2	4	5	6	2	3	5	6
4.88	(16)	2	4	5		2	4	6		2	3	5	6
Main Floor Walls of Two Story ICF Structure Supporting Wood Frame Floors and Roof													
		Number and length of shear walls provided											
		$1 \times 12^{\prime}-0^{\prime \prime}$	$2 \times 6{ }^{\prime}-8$	$3 \times 4{ }^{\prime}-4{ }^{\prime \prime}$	$4 \times 3{ }^{\prime}-4{ }^{\prime \prime}$	$1 \times 16^{\prime}-0{ }^{\prime \prime}$	$2 \times 9$ 9-0"	$3 \times 6{ }^{\prime}-4{ }^{\prime \prime}$	$4 \times 4{ }^{\prime}-6{ }^{\prime \prime}$	$1 \times 21^{\prime}-0 \mid$	$2 \times 12^{\prime \prime}-4$	$3 \times 8$ '6"	$4 \times 6{ }^{\prime}-6{ }^{\prime \prime}$
2.44	(8)	2	4	5	5	2	4	5	6	2	4	4	4
- 2.75	(9)	2	4	5	5	2	5	5	6	2	4	5	5
- 3.05	(10)	2	4	5	6	2	5	- 5	6	2	4	5	5
3.66	(12)	2	5	6		2	5	6		2	4	5	5
4.27	(14)	2	5	6		2	5	6		2	4	5	6
4.88	(16)	2	6			2	5	6		2	4	5	6
Vertical Reinforcement	6"ICF   Tie Spacing	As per table A.1.1.				As per table A.1.1.				As per table A.1.1.			
	8"ICF   Tie Spacing	As per table A.1.2.				As per table A.1.2.				As per table A.1.2.			
Horizontal Reinforcement	6" ICF   Tie Spacing	10 M @		450	(18)	10 M @		450	(18)	10 M @		450	(18)
	8"ICF   Tie Spacing	10 M @		400	(16)	10 M @		400	(16)	10 M @		400	(16)

## NOTES

1. $\quad \mathrm{S}_{\text {a,lCF }}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix A .
2. This table is to be used in conjunction with the "Design Limitations".
3. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300 mm ( 12 ") walls. Place each layer as shown in the rebar placement drawing.

All four sides of the building are to have a minimum number and length of shear walls that conforms to this table.
Use Table A. 6 for buildings that do not meet the required wall length of this table.
Use the left-most column that meets the minimum number and length of shear walls to determine the minimum required concentrated reinforcement
Shaded cells indicate that the minimum bars required beside all windows and openings, as per the "Design Limitations", are adequate.
All required number of 10 M bars may be replaced by an equivalent number of 15 M bars as given in the "Design Limitations"
9. All concentrated reinforcement is to be continues to the bottom of the foundation wall. Provide lap splices as required.
10. Concentrated reinforcement is to be placed in accordance with Bar Placement Detail.

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table A. 6 - Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $\mathrm{S}_{\mathrm{a}, \mathrm{ICF}}>0.2$ and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$ (in a Building Without Walkout Basement)

Wall Height		Number of Concentrated Vertical 10M Reinforcing Bars at End of Each Shear Wall															
		Seismic Zone Classification															
m	(ft)	$\mathrm{S}_{\text {a }}$ CFF $\leq 0.2$				$\mathrm{S}_{\text {alcF }} \leq 0.4$				$S_{\text {alcF }} \leq 0.7$				$S_{\text {alcF }} \leq 1.05$			
Second Floor Walls of Two Story ICF Structure Supporting Wood Frame Roof																	
		Number and length of shear walls provided															
		$1 \times 10^{\prime \prime}-0^{\prime \prime}$	$2 \times 5{ }^{1}-0^{\prime \prime}$	$3 \times 4$-0"	$4 \times 3$-0"	$1 \times 13-0{ }^{\prime \prime}$	$2 \times 7$-6"	$3 \times 5{ }^{1}-6{ }^{\prime \prime}$	4×4-0"	$1 \times 16-0{ }^{\prime \prime}$	$2 \times 9$-0"	$3 \times 7$-0"	$4 \times 5{ }^{\text {- }}$ " ${ }^{\prime \prime}$	$1 \times 18-0{ }^{\prime \prime}$	$2 \times 122^{\prime \prime}$	$3 \times 9.01$	4×7-0"
2.44	(8)	2	2	3	3	2	2	3	3	2	3	3	4	2	2	3	4
2.75	(9)	2	3	3	4	2	3	4	4	2	3	3	5	2	2	4	4
3.05	(10)	2	4	3	4	3	4	4		2	4	4		3	3	4	6
Main Floor Walls of One Story ICF Structure Supporting Wood Frame Roof																	
		Number and length of shear walls provided															
		$1 \times 10^{\prime}-0^{\prime \prime}$	$2 \times 5{ }^{\text {² }}$ " ${ }^{\prime \prime}$	$3 \times 4{ }^{\prime}-0^{\prime \prime}$	$4 \times 3^{\prime}-0{ }^{\prime \prime}$	$1 \times 14^{\prime}-0^{\prime \prime}$	$2 \times 8{ }^{-10}$	$3 \times 6{ }^{\prime}-0^{\prime \prime}$	$4 \times 4{ }^{\text {- }}$ - ${ }^{\text {" }}$	$1 \times 17^{\prime}-0^{\prime \prime}$	$2 \times 11^{\prime}-0^{\prime \prime}$	$3 \times 7$ - ${ }^{\text {a }}$	$4 \times 5{ }^{\text {- }}$ - ${ }^{\text {" }}$	$1 \times 20^{\prime}-0^{\prime \prime}$	$2 \times 12^{\prime \prime} 0^{\prime \prime}$	$3 \times 9$-0"	$4 \times 7$-0"
2.44	(8)	2	2	3	3	2	2	3	3	2	2	2	3	2	2	3	4
2.75	(9)	2	3	3	4	2	3	3		2	2	3	4	2	2	4	4
3.05	(10)	2	4	3	4	2	4	4		2	3	4	5	3	3	4	6
3.66	(12)	2	4	4	5	2	4	4		2	4	5		3	3	6	6
4.27	(14)	2	6	5		2	5			4	5			5			
4.88	(16)	2	6			2	5			4	6			6			
Main Floor Walls of Two Story Structure Supporting 2nd Story Wood Framed Walls, Floor and Roof																	
		Number and length of shear walls provided															
		$1 \times 14^{\prime}-0^{\prime \prime}$	$2 \times 8$-0"	$3 \times 6$-0"	$4 \times 4$-0"	$1 \times 16-0{ }^{\prime \prime}$	$2 \times 11^{\prime}-0^{\prime \prime}$	$3 \times 8$-0"	4×6-0"	$1 \times 24-0{ }^{\prime \prime}$	$2 \times 14-0{ }^{\prime \prime}$	$3 \times 10^{\prime \prime}-0^{\prime \prime}$	$4 \times 8$-0"	$1 \times 28-0{ }^{\prime \prime}$	$2 \times 16$-0"	$3 \times 122^{\prime}-0^{\prime \prime}$	$4 \times 9-01$
2.44	(8)	2	2	2	4	2	2	4	4	2	2	3	4	2	2	4	5
2.75	(9)	2	2	3	4	3	3	5	5	2	2	4	5	2	3	4	6
3.05	(10)	2	3	3		3	3	5	5	2	3	4	5	2	4	5	
3.66	(12)	2	3	4		4	4	5		2	4	6		2	6		
4.27	(14)	2	4			6	5			2				4			
4.88	(16)	2	4			6	5			2				4			
Main Floor Walls of Two Story ICF Structure Supporting Wood Frame Floors and Roof																	
		Number and length of shear walls provided															
		1×16-0"	$2 \times 10$-0"	$3 \times 7$-0"	$4 \times 6$-0"	$1 \times 22^{-01}$	$2 \times 14-0{ }^{\text {a }}$	$3 \times 11^{\prime}-01$	$4 \times 8$-0"	$1 \times 28^{-0} 0^{\prime \prime}$	$2 \times 16$-0"	$3 \times 12-0{ }^{\prime \prime}$	$4 \times 9{ }^{\prime \prime} \mathbf{4}^{\prime \prime}$	$1 \times 34-0{ }^{\prime \prime}$	$2 \times 20^{\prime}-0^{\prime \prime}$	$3 \times 15{ }^{-010}$	$4 \times 12-0^{\prime \prime}$
2.44	(8)	2	3	3	3	2	3	3	4	2	2	4	5	2	2	4	5
2.75	(9)	2	3	4	3	2	3	3	5	2	3		6	2	-3	5	6
3.05	(10)	2	3	4	4	2	4	4	6	2	4	5		2	4	6	$\cdots$
3.66	(12)	2	3	5	5	2	4	4	6	2	6			2	6		
4.27	(14)	2	4	6		3	5	5		5				5			
4.88	(16)	2	4			3	5	5		5				5			
Vertical Reinforcement	$6^{\prime \prime}$ ICFTie Spacing	As per table A.2.1.															
	$8^{\prime \prime}$ ICF Tie Spacing	As per table A.2.2.															
Horizontal Reinforcement	Block Height of 12 "and $18{ }^{\prime \prime}$	As per table A.2.1.															
	Block Height of 16"	As per table A.2.2.															

## NOTES

1. $\mathrm{S}_{\mathrm{a}, \mathrm{ICF}}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix A .
2. This table is to be used in conjunction with the "Design Limitations".
3. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300 mm ( $12^{\prime \prime}$ ) walls. Place each layer as shown in the rebar placement drawing.

All four sides of the building are to have a minimum number and length of shear walls that conforms to this table.
Use the left-most column that meets the minimum number and length of shear walls to determine the minimum required concentrated reinforcement
Shaded cells indicate that the minimum bars required beside all windows and openings, as per the "Design Limitations", are adequate.
All required number of 10M bars may be replaced by an equivalent number of 15M bars as given in the "Design Limitations"
All concentrated reinforcement is to be continues to the bottom of the foundation wall. Provide lap splices as required.
Concentrated reinforcement is to be placed in accordance with Bar Placement Detail.
10. Horizontal reinforcement in shear walls where $S_{\text {a,lcF }}>0.2$ must be anchored using a standard $180^{\circ}$ hook around vertical end bars.
11. When using this table for $\mathrm{S}_{\mathrm{a}, \mathrm{CF}} \leq 0.2$, use the vertical and horizontal distributed steel in Tables A.2.1. or A.2.2. for $\mathrm{S}_{\mathrm{a}, \mathrm{CC}} \leq 0.4$.

Build Anything Better.

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table A.7. Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $\mathrm{S}_{\mathrm{a}, \mathrm{ClF}} \leq 0.2$ and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 0.5 \mathrm{kPa}$ (in a Building With Walkout Basement)

Wall Height		Number of Concentrated Vertical 10M Reinforcing Bars at End of Each Shear Wall											
		Seismic Zone Classification											
m	(ft)	$\mathrm{S}_{\text {aICF }} \leq 0.085$				$\mathrm{S}_{\text {a }}$ CF 50.145				$\mathrm{S}_{\text {دل¢F }} \leq 0.2$			
Second Floor Walls of Two Story ICF Structure Supporting Wood Frame Roof													
		Number and length of shear walls provided											
		$1 \times 8{ }^{\prime}-0{ }^{\prime \prime}$	$2 \times 4$-0"	$3 \times 2$-8"	$4 \times 2$-0"	$1 \times 11^{\prime}-0 \mid$	$2 \times 6{ }^{\prime}-0{ }^{\prime \prime}$	$3 \times 4$ '0"	$4 \times 3$ '-6"	$1 \times 14{ }^{\prime}-0^{\prime \prime}$	$2 \times 8{ }^{\prime}-0{ }^{\prime \prime}$	$3 \times 5$-6"	$4 \times 4{ }^{\prime \prime} 4^{\prime \prime}$
2.44	(8)	2	3	3	3	2	2	3	3	2	2	3	3
2.75	(9)	2	3	3	4	2	3	3	4	2	3	3	3
3.05	(10)	2	4	4	5	2	3	4	4	2	3	4	4

Main Floor Walls of One Story ICF Structure Supporting Wood Frame Roof

		Number and length of shear walls provided											
		$1 \times 8{ }^{\prime}-0{ }^{\prime \prime}$	$2 \times 4$-0"	$3 \times 2$ '-8"	$4 \times 2$-0"	$1 \times 11$ '-0"	$2 \times 6{ }^{\prime}-0{ }^{\prime \prime}$	$3 \times 4{ }^{\prime}-0{ }^{\prime \prime}$	$4 \times 3$ '-6"	$1 \times 14{ }^{\prime}-0 \mid$	$2 \times 8{ }^{\prime}-0$	$3 \times 5$-6"	$4 \times 4$ '-4"
2.44	(8)	2	2	3	3	2	2	3	3	2	2	2	2
2.75	(9)	2	3	3	3	2	3	3	3	2	2	3	3
3.05	(10)	2	3	4	4	2	3	4	4	2	2	3	3
3.66	(12)	3	4	5		3	4	5	5	2	4	4	4
4.27	(14)	4	6			4	5	6		3	5	6	6
4.88	(16)	4	6			4	6			4	5		

Main Floor Walls of Two Story Structure Supporting 2nd Story Wood Framed Walls, Floor and Roof
Number and length of shear walls provided

		Number and length of shear walls provided											
		$1 \times 10^{\prime}-0 \mid$	$2 \times 7$ 7-0"	$3 \times 4{ }^{\prime}-6{ }^{\prime \prime}$	$4 \times 3{ }^{\prime}-4{ }^{\prime \prime}$	$1 \times 14{ }^{\prime}-0 \mid$	$2 \times 88^{\prime}-0{ }^{\prime \prime}$	$3 \times 6{ }^{\prime}-4{ }^{\prime \prime}$	$4 \times 4{ }^{\prime}-4{ }^{\prime \prime}$	$1 \times 20^{\prime}-0$	$2 \times 11{ }^{\prime}-0$	$3 \times 7$ '-8"	$4 \times 6{ }^{\prime}-0^{\prime \prime}$
2.44	(8)	2	2	3	3	2	3	3	4	2	2	3	3
2.75	(9)	3	2	4	4	2	3	3	4	2	3	3	4
3.05	(10)	3	3	4	5	3	4	4	5	2	3	4	5
3.66	(12)	4	3	5	5	4	5	5	6	2	4	5	5
4.27	(14)	5	4	6		4	6	6		2	5	6	6
4.88	(16)	5	4			4	6	6		2	5	6	

Main Floor Walls of Two Story ICF Structure Supporting Wood Frame Floors and Roof
Number and length of shear walls provided

		Number and length of shear walls provided											
		$1 \times 12^{\prime}-0^{\prime \prime}$	$2 \times 7{ }^{\text {' }}$ - ${ }^{\prime \prime}$	$3 \times 4{ }^{\prime}-8{ }^{\prime \prime}$	$4 \times 3$ 3'8"	$1 \times 18^{\prime}-0 \mid$	$2 \times 10^{\prime}-0^{\prime \prime}$	$3 \times 7{ }^{\prime}-8{ }^{\prime \prime}$	$4 \times 5{ }^{\prime}-4$ "	$1 \times 24{ }^{\prime}-0 \mid$	$2 \times 13{ }^{\prime}-0$	$3 \times 9$ '-6"	$4 \times 7$ '-8"
2.44	(8)	3	3	4	4	2	3	4	4	2	3	3	3
2.75	(9)	3	4	5	5	2	5	4	5	2	3	4	4
3.05 A	(10)	3 -	4	5	5	2	5 N	4	5	2	3	4	4
3.66	(12)	4	5	6	6	2	) 5	5	) 6	2	-4	5	5
4.27	(14)	5	6			3	6	6		2	5	6	6
4.88	(16)	5	6			3	6	6		2	5	6	
erical	$6^{\prime \prime}$ ICFTie Spacing	As per table A.1.1.				As per table A.1.1.				As per table A.1.1.			
Reinforcement	$8^{\prime \prime}$ ICFTe Spacing	As per table A.1.2.				As per table A.1.2.				As per table A.1.2.			
$\underset{\text { Reinforcement }}{\substack{\text { Horizontal } \\ \text { Rent }}}$	Block Height of 12 "and 18 "	10 M @		450	(18)	10 M @		450	(18)	10 M @		450	(18)
	Block Height of 16"	10 M @		400	(16)	10 M @		400	(16)	10 M @		400	(16)

## NOTES

[^12]
## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table A. 8 - Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $\mathrm{S}_{\mathrm{a}, \mathrm{ICF}} \leq 0.2$ and Hourly Wind Pressure, $0.5 \mathrm{kPa}<\mathrm{q}_{1 / 50} \leq 0.75 \mathrm{kPa}$ (in a Building With Walkout Basement)

Wall Height		Number of Concentrated Vertical 10M Reinforcing Bars at End of Each Shear Wall											
		Seismic Zone Classification											
m	(ft)	$S_{\text {a }}^{\text {ICF }}$ S $\leq 0.085$				$S_{\text {a }}$ CF 50.145				$S_{\text {alcF }} \leq 0.2$			
Second Floor Walls of Two Story ICF Structure Supporting Wood Frame Roof													
		Number and length of shear walls provided											
		$1 \times 8{ }^{\prime}$-0"	$2 \times 4$-0"	$3 \times 2$ '-8"	$4 \times 2$-0"	$1 \times 10$ '-6"	$2 \times 5{ }^{\prime}-8{ }^{\prime \prime}$	$3 \times 4$-0"	$4 \times 3$-4"	$1 \times 13$ '-6"	$2 \times 7{ }^{\prime}-6{ }^{\prime \prime}$	$3 \times 5{ }^{\prime}-0{ }^{\prime \prime}$	$4 \times 4$-0"
2.44	(8)	2	3	3	4	2	3	3	4	2	2	3	3
2.75	(9)	2	3	4	4	2	3	3	4	2	2	3	4
3.05	(10)	2	4	4	5	2	4	4	5	2	3	4	5
Main Floor Walls of One Story ICF Structure Supporting Wood Frame Roof													
		Number and length of shear walls provided											
		$1 \times 8{ }^{\prime}$-0"	$2 \times 4{ }^{\prime}-0$	$3 \times 2$ '-8"	$4 \times 2$-0"	$1 \times 10$ '-6"	$2 \times 5{ }^{\prime}-8{ }^{\prime \prime}$	$3 \times 4{ }^{\prime}-0 \mid$	$4 \times 3$-0"	$1 \times 13{ }^{\prime}-6{ }^{\prime \prime}$	$2 \times 7{ }^{\prime}-6{ }^{\text {² }}$	$3 \times 5$ '-0"	$4 \times 4{ }^{\prime}-0{ }^{\prime \prime}$
2.44	(8)	2	3	3	3	2	2	3	3	2	2	3	3
2.75	(9)	2	3	3	4	2	3	3	4	2	2	3	3
3.05	(10)	2	4	4	4	2	3	4	5	2	3	4	4
3.66	(12)	3	5	5		3	5	5	5	2	4	5	5
4.27	(14)	3	5			4	5	6		3	5	6	6
4.88	(16)	3	6			4	6			4	5		
Main Floor Walls of Two Story Structure Supporting 2nd Story Wood Framed Walls, Floor and Roof													
		Number and length of shear walls provided											
		$1 \times 10$-0"	$2 \times 7{ }^{\prime}-0$	$3 \times 4{ }^{\prime}-6{ }^{\prime \prime}$	$4 \times 3$ '-4"	$1 \times 14{ }^{\prime}-0 \mid$	$2 \times 7{ }^{\prime}-8$ "	$3 \times 5$ '-8"	$4 \times 4{ }^{\prime}-4{ }^{\prime \prime}$	$1 \times 17{ }^{\prime}-6 "$	$2 \times 10{ }^{\prime}-6{ }^{\prime \prime}$	$3 \times 7{ }^{\prime}-4$	$4 \times 5{ }^{\prime}-8{ }^{\prime \prime}$
2.44	(8)	2	2	3	4	2	4	4	4	2	3	3	4
2.75	(9)	2	2	4	4	2	4	4	4	2	3	3	4
3.05	(10)	3	3	4	5	2	4	5	5	2	3	4	5
3.66	(12)	4	3	5	6	3	5	6	6	2	4	5	6
4.27	(14)	4	4	6		3	6	6		3	4	5	6
4.88	(16)	4	4			3	6			3	4	6	
Main Floor Walls of Two Story ICF Structure Supporting Wood Frame Floors and Roof													
		Number and length of shear walls provided											
		$1 \times 12$-0"	$2 \times 7{ }^{\prime}-0$	$3 \times 4{ }^{\prime}-8{ }^{\prime \prime}$	$4 \times 3$ '-8"	$1 \times 17^{\prime}-0 \mid$	$2 \times 9$ 9'-6"	$3 \times 7$-0"	$4 \times 5$ '-4"	$1 \times 22$-0"	$2 \times 12^{\prime}-6{ }^{\prime \prime}$	$3 \times 9$-0"	$4 \times 7{ }^{\prime}-4{ }^{\prime \prime}$
2.44	(8)	3	3	4	4	2	4	4	5	2	3	4	4
2.75	(9)	3	4	4	5	2	4	4	5	2	3	4	4
3.05	(10)	3	4	5	5	2	4	5	6	2	3	4	5
- 3.66	(12)	4	5	6	6	3	5	$1 \circlearrowleft$	-	2	- 4	5	6
4.27	(14)	4	5			3	6			2	5	6	6
4.88	(16)	4	5			3	6			2	5	6	6
Vertical Reinforcement	$6{ }^{\text {" }}$ ICF Tie Spacing	As per table A.1.1.				As per table A.1.1.				As per table A.1.1.			
	$8^{\prime \prime}$ ICFTie Spacing	As per table A.1.2.				As per table A.1.2.				As per table A.1.2.			
Horizontal Reinforcement	Block Height of 12 "and $18{ }^{\prime \prime}$	10 M @		450	(18)	10 M @		450	(18)	10 M @		450	(18)
	Block Height of 16"	10 M @		400	(16)	10 M @		400	(16)	10 M @		400	(16)

## NOTES

1. $\quad \mathrm{S}_{\mathrm{a}, \mathrm{ICF}}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix A .
2. This table is to be used in conjunction with the "Design Limitations".

Provide two layers of the indicated horizontal and vertical distributed steel specified for $300 \mathrm{~mm}\left(12^{\prime \prime}\right)$ walls. Place each layer as shown in the rebar placement drawing.
All four sides of the building are to have a minimum number and length of shear walls that conforms to this table.
Use Table A. 10 for buildings that do not meet the required wall length of this table.
Use the left-most column that meets the minimum number and length of shear walls to determine the minimum required concentrated reinforcement
Shaded cells indicate that the minimum bars required beside all windows and openings, as per the "Design Limitations", are adequate.
All required number of 10 M bars may be replaced by an equivalent number of 15 M bars as given in the "Design Limitations"
9. All concentrated reinforcement is to be continues to the bottom of the foundation wall. Provide lap splices as required.
10. Concentrated reinforcement is to be placed in accordance with Bar Placement Detail.

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table A. 9 - Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $\mathrm{S}_{\mathrm{a}, \mathrm{ICF}} \leq 0.2$ and Hourly Wind Pressure, $0.75 \mathrm{kPa}<\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$ (in a Building With Walkout Basement)

Wall Height		Number of Concentrated Vertical 10M Reinforcing Bars at End of Each Shear Wall											
		Seismic Zone Classification											
m	(ft)	$\mathrm{S}_{\text {alcF }} \leq 0.085$				$\mathrm{S}_{\text {a }}$ CF 50.145				$S_{\text {a }}$ CEF $\leq 0.2$			
Second Floor Walls of Two Story ICF Structure Supporting Wood Frame Roof													
		Number and length of shear walls provided											
		$1 \times 8{ }^{\prime}-0{ }^{\prime \prime}$	$2 \times 4{ }^{\prime}-0{ }^{\prime \prime}$	$3 \times 2$-8"	$4 \times 2$-0"	$1 \times 10^{\prime}-0 \mid$	$2 \times 5$ '-6"	$3 \times 4{ }^{\prime}-0 \mid$	$4 \times 3$-4"	$1 \times 12$-0"	$2 \times 7{ }^{\prime}-0 \mid$	$3 \times 4$ '-6"	$4 \times 3$ - ${ }^{\prime \prime}$
2.44	(8)	2	3	4	4	2	3	3	4	2	3	4	4
2.75	(9)	2	4	4	4	2	4	4	4	2	3	4	5
3.05	(10)	2	4	4	5	2	4	4	5	2	3	4	5

Main Floor Walls of One Story ICF Structure Supporting Wood Frame Roof
Number and length of shear walls provided

		Number and length of shear walls provided											
		$1 \times 8{ }^{\prime}-0 \mid$	$2 \times 4$ '0"	$3 \times 2$ '-8"	$4 \times 2$-0"	$1 \times 10^{\prime}-0 \mid$	$2 \times 5$-6"	$3 \times 4$-0"	$4 \times 3$ '-0"	$1 \times 12 \mathrm{C}$ - ${ }^{\prime \prime}$	$2 \times 7$ 7-0"	$3 \times 4{ }^{\prime}-6{ }^{\prime \prime}$	$4 \times 3$ '-6"
2.44	(8)	2	3	3	3	2	3	3	3	2	2	3	3
2.75	(9)	2	3	4	4	2	3	3	4	2	3	4	4
3.05	(10)	2	3	4	4	2	3	4	4	2	3	4	4
3.66	(12)	2	4	5		2	4	4	5	2	4	5	5
4.27	(14)	2	5			2	5	5	6	2	4	6	
4.88	(16)	2	5			2	6	6		2	5		

Main Floor Walls of Two Story Structure Supporting 2nd Story Wood Framed Walls, Floor and Roof

		Number and length of shear walls provided											
		$1 \times 10$ '-0"	$2 \times 7{ }^{\prime}-0$	$3 \times 4{ }^{\prime}-6{ }^{\prime \prime}$	$4 \times 3$ '-4"	$1 \times 13^{\prime}-0 \mid$	$2 \times 7{ }^{\prime \prime} \mathbf{4}^{\prime \prime}$	$3 \times 5{ }^{\prime}-4{ }^{\prime \prime}$	$4 \times 4{ }^{\prime}-0{ }^{\prime \prime}$	$1 \times 15{ }^{\prime}-0 \mid$	$2 \times 9$ '-6"	$3 \times 6$ '-8"	$4 \times 5$ '-4"
2.44	(8)	2	2	3	4	2	4	4	5	2	3	4	4
2.75	(9)	2	2	4	4	2	4	5	5	2	3	4	5
3.05	(10)	2	2	4	4	2	4	5	5	2	3	4	5
3.66	(12)	2	2	4	5	2	4	5	6	2	4	5	5
4.27	(14)	2	2	4		2	5	6		2	4	6	6
4.88	(16)	2	2	5		2	5	6		2	4	6	

Main Floor Walls of Two Story ICF Structure Supporting Wood Frame Floors and Roof

		Number and length of shear walls provided											
		$1 \times 12{ }^{\prime}-0$	$2 \times 7$-0"	$3 \times 4{ }^{\prime}-6{ }^{\prime \prime}$	$4 \times 3$ '-6"	$1 \times 16{ }^{\prime \prime}-0^{\prime \prime}$	$2 \times 9{ }^{\prime}-0{ }^{\prime \prime}$	$3 \times 6$ '-6"	$4 \times 4{ }^{\prime}-6{ }^{\prime \prime}$	$1 \times 20$ '0"	$2 \times 12$-0"	$3 \times 8{ }^{\prime}-4{ }^{\prime \prime}$	$4 \times 6$ '-8"
2.44	(8)	2	4	4	5	2	4	5	5	2	3	4	4
2.75	(9)	2	4	5	5	2	4	5	6	2	3	5	5
3.05	(10)	2	4	5	6	2	4	5		2	3	5	5
- 3.66	(12)	2	5	6	1	2	5	16	-	2	3		6
4.27	(14)	2	5			2	5	6		2	3	6	$\square$
4.88	(16)	2	6			2	5			2	3	6	
Vertical Reinforcement	6 "ICF Tie Spacing	As per table A.1.1.				As per table A.1.1.				As per table A.1.1.			
	8"ICF Tie Spacing	As per table A.1.2.				As per table A.1.2.				As per table A.1.2.			
Horizontal Reinforcement	Block Height of 12 "and $18{ }^{\prime \prime}$	10 M @		450	(18)	10 M @		450	(18)	10 M @		450	(18)
	Block Height of 16"	10 M @		400	(16)	10 M @		400	(16)	10 M @		400	(16)

## NOTES

[^13]Table A. 10 - Above Grade Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $S_{a, I C F}>$ 0.2 and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$ (in a Building With Walkout Basement)

Wall Height																	
		Seismic Zone Classification															
m	(ft)					$\mathrm{S}_{\text {a }}$ CEF $\leq 0.4$				$S_{\text {a }}$ CFE $\leq 0.7$				$\mathrm{S}_{\text {a }}$ (CFF $\leq 1.05$			
Second Floor Walls of Two Story ICF Structure Supporting Wood Frame Roof																	
		Number and length of shear walls provided															
		$1 \times 10^{-}-0^{\prime \prime}$	$2 \times 5{ }^{1}-0^{\prime \prime}$	$3 \times 4$-0"	$4 \times 3$-0"	$1 \times 13^{\prime}-0^{\prime \prime}$	$2 \times 7{ }^{\prime \prime}$-6"	$3 \times 5^{\prime}-6{ }^{\prime \prime}$	$4 \times 4$-0"	$1 \times 16-0{ }^{\prime \prime}$	$2 \times 9$-0"	$3 \times 7$-0"	$4 \times 5{ }^{\prime}-0^{\prime \prime}$	$1 \times 18-0{ }^{\prime \prime}$	$2 \times 12-0{ }^{\prime \prime}$	$3 \times 9-010$	$4 \times 7$-0"
2.44	(8)	2	3	3	3	2	3	4	4	2	3	3	5	2	2	3	4
2.75	(9)	2	4	4	4	3	4	5	5	2	4	5		3	4	4	6
3.05	(10)	2	5	4	5	4	5	6		3	6	6		5	5	6	
Main Floor Walls of One Story ICF Structure Supporting Wood Frame Roof																	
		Number and length of shear walls provided															
		$1 \times 11^{\prime}-0^{\prime \prime}$	$2 \times 6{ }^{1010}$	$3 \times 4$-0"	$4 \times 3$-0"	$1 \times 16^{\prime}-0^{\prime \prime}$	2×9-0"	$3 \times 6{ }^{\prime}-0^{\prime \prime}$	$4 \times 4-0{ }^{\prime \prime}$	$1 \times 20-0{ }^{\prime \prime}$	$2 \times 12-0{ }^{\prime \prime}$	$3 \times 8$-0"	$4 \times 6$-0"	$1 \times 24-0{ }^{\prime \prime}$	$2 \times 13^{-101}$	$3 \times 9-011$	$4 \times 7$-0"
2.44	(8)	2	2	3	3	2	2	3	4	2	2	2	3	2	2	3	4
2.75	(9)	2	3	3	4	2	3	3		2	2	3	4	2	2	4	4
3.05	(10)	2	4	4	4	2	4	4		2	3	4	5	3	3	5	6
3.66	(12)	2	4	6	6	2	4	6		2	4	6		3	6		
4.27	(14)	3	6			3				4	6			5			
4.88	(16)	4				4				6							
Main Floor Walls of Two Story Structure Supporting 2nd Story Wood Framed Walls, Floor and Roof																	
		Number and length of shear walls provided															
		1×14'-0"	$2 \times 8{ }^{1} 6^{\prime \prime}$	$3 \times 6{ }^{\prime}-0^{\prime \prime}$	$4 \times 4{ }^{4}-0^{\prime \prime}$	$1 \times 20^{\prime}-0^{\prime \prime}$	$2 \times 14{ }^{\prime}-0^{\prime \prime}$	$3 \times 9$-0"	$4 \times 7$-0"	$1 \times 26$-0"	$2 \times 15^{\prime}-0^{\prime \prime}$	$3 \times 11^{1}-01$	$4 \times 9$-0"	$1 \times 30^{\prime}-0 \mid$	$2 \times 17^{\prime}-0^{\prime \prime}$	$3 \times 13{ }^{\prime}-01$	$4 \times 10^{\prime}-0 \mid$
2.44	(8)	2	2	3	5	2	2	4	4	2	2	3	4	2	5	6	6
2.75	(9)	2	3	4	5	2	2	5	5	2	3	4	5	2	6	6	
3.05	(10)	2	3	4		3	2	5	5	2	4	5	6	2	6		
3.66	(12)	2	4	6		4	2	6		2	6			4			
4.27	(14)	4	6			6	4			2				5			
4.88	(16)	4	6			6	4			5							
Main Floor Walls of Two Story ICF Structure Supporting Wood Frame Floors and Roof																	
		Number and length of shear walls provided															
		$1 \times 16{ }^{\prime}-0{ }^{\prime \prime}$	$2 \times 10^{\prime \prime}-4$	$3 \times 7$-6"	$4 \times 6$-0"	$1 \times 23-0{ }^{\prime \prime}$	$2 \times 15^{\prime}-0^{\prime \prime}$	$3 \times 11^{\prime}-0 \mid$	$4 \times 9$-0"	$1 \times 32-01$	$2 \times 17^{\prime}-0^{\prime \prime}$	$3 \times 13^{\prime}-0^{\prime \prime}$	$4 \times 10^{\prime}-0^{\prime \prime}$	$1 \times 38{ }^{1} 0{ }^{\prime \prime}$	$2 \times 22^{\prime}-0 \mid$	$3 \times 17^{1-01}$	$4 \times 13^{\prime}-0^{\prime \prime}$
2.44	(8)	2	3	3	4	2	3	4	4	2	3	4	5	2	4	4	5
2.75	(9)	2	3	4	4	2	3	4	5	2	4	5	6	2	5	5	6
$3.05$	(10)	3	4	5	5	3	4	5	6	2	5	6	,	2	5	6	-
3.66	(12)	4	5	6	6	4	5	6		2				2			
4.27	(14)	5	6			6				5				5			
4.88	(16)	5	6			6				6				6			
Vertical Reinforcement	$6{ }^{\prime \prime}$ ICF Tie Spacing	As per table A.2.1.															
	$8^{\prime \prime}$ ICF Tie Spacing	As per table A.2.2.															
Horizontal Reinforcement	Block Height of 12 " and $18{ }^{\prime \prime}$	As per table A.2.1.															
	Block Height of 16"	As per table A.2.2.															

## NOTES

. $\mathrm{S}_{\text {a, ICF }}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix A
2. This table is to be used in conjunction with the "Design Limitations"'
3. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300 mm ( $12^{\prime \prime}$ ) walls. Place each layer as shown in the rebar placement drawing. 4. All four sides of the building are to have a minimum number and length of shear walls that conforms to this table.

Use the left-most column that meets the minimum number and length of shear walls to determine the minimum required concentrated reinforcement
Shaded cells indicate that the minimum bars required beside all windows and openings, as per the "Design Limitations", are adequate.
All required number of 10 M bars may be replaced by an equivalent number of 15 M bars as given in the "Design Limitations"
All concentrated reinforcement is to be continues to the bottom of the foundation wall. Provide lap splices as required.
Concentrated reinforcement is to be placed in accordance with Bar Placement Detail.
10. Horizontal reinforcement in shear walls where $\mathrm{S}_{\mathrm{a}, \mathrm{CF}}>0.2$ must be anchored using a standard $180^{\circ}$ hook around vertical end bars.
11. When using this table for $\mathrm{S}_{\mathrm{a}, \text { IC }} \leq 0.2$, use the vertical and horizontal distributed steel in Tables A.2.1. or A.2.2. for $\mathrm{S}_{\mathrm{a}, \text { ICF }} \leq 0.4$.

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table A. 11 - Above Grade Walkout Basement Shear Wall Concentrated Vertical Reinforcement for Seismic Zone Classification, $\mathrm{S}_{\mathrm{a}, \mathrm{ICF}} \leq 0.4$ and Hourly Wind Pressure, $\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$

Wall Height		Seismic Zone Classification											
m	(ft)	$\mathrm{S}_{\text {alce }} \leq 0.085$			$\mathrm{S}_{\text {alce }} \leq 0.145$			$\mathrm{S}_{\text {a }}^{\text {LCF }}$ $\leq 0.2$			$\mathrm{S}_{\text {a }}^{\text {LCF }}$ $\leq 0.4$		
Walkout Basement Wall of a Single Story ICF Structure Supporting Wood Framed Roof													
		Number and length of shear walls provided											
		$1 \times 10{ }^{\prime}-0$	$2 \times 6{ }^{\prime}-0{ }^{\prime \prime}$	$3 \times 4{ }^{\prime}-0 \mid$	$1 \times 12{ }^{\prime}-0 \mid$	$2 \times 8{ }^{\prime}-0{ }^{\prime \prime}$	$3 \times 6{ }^{\prime}-0{ }^{\prime \prime}$	$1 \times 14{ }^{\prime}-0 \mid$	$2 \times 9$ 9'0"	$3 \times 7$ '-0"	$1 \times 19{ }^{\prime}-0$	$2 \times 13{ }^{\prime}-0 \mid$	$3 \times 10{ }^{\prime}-0^{\prime \prime}$
2.44	(8)	2	3	5	2	3	3	2	3	4	2	2	4
2.75	(9)	2	3	6	2	3	4	2	4	4	2	3	5
3.05	(10)	2	3	6	2	3	4	2	5	5	4	4	5
3.66	(12)	2	4		3	4	5	3	6	6	6	6	

Walkout Basement Walls of a Two Story Wood Framed Structure Supporting Wood Frame Floors and Roof
Number and length of shear walls provided

		Number and length of shear walls provided											
		$1 \times 10$ '-0"	$2 \times 6{ }^{\prime}-6{ }^{\prime \prime}$	$3 \times 5{ }^{\prime}-0{ }^{\prime \prime}$	$1 \times 12 \mathrm{C}-0$	$2 \times 8$ 8-0"	$3 \times 6{ }^{\prime}-0 \mid$	$1 \times 14{ }^{\text {'-0" }}$	$2 \times 9$ 9'0"	$3 \times 7$ 7'0"	$1 \times 19{ }^{\prime}-0$	$2 \times 13$ '-0"	$3 \times 10{ }^{\prime}-0 \mid$
2.44	(8)	2	4	4	2	3	4	2	3	4	2	3	4
2.75	(9)	3	4	5	2	4	4	2	4	4	3	4	5
3.05	(10)	4	5	5	2	4	4	2	4	5	4	5	6
3.66	(12)	5	6	6	3	4	5	3	5	6	5	6	6

Walkout Basement Wall of a Two Story Building with Main Floor ICF Walls Supporting 2nd Story Wood Framed Walls, Floor and Roof
Number and length of shear walls provided

		Number and length of shear walls provided											
		$1 \times 12{ }^{\prime}-0^{\prime \prime}$	$2 \times 7{ }^{\text {'-0" }}$	$3 \times 5$ '-6"	$1 \times 14{ }^{\prime}-0$	$2 \times 9$-0"	$3 \times 7$ '-0"	$1 \times 16{ }^{\prime}-0 \mid$	$2 \times 11^{\prime}-0$	$3 \times 8$-6"	$1 \times 22^{\prime}-0^{\prime \prime}$	$2 \times 15^{\prime}-0{ }^{\prime \prime}$	$3 \times 12{ }^{\prime}-0^{\prime \prime}$
2.44	(8)	2	3	3	2	4	4	2	3	4	2	4	4
2.75	(9)	2	3	4	2	4	5	2	3	4	4	4	5
3.05	(10)	2	4	4	2	4	5	2	3	4	4	5	5
3.66	(12)	2	4	5	3	5	6	4	4	6	6	6	6

Walkout Basement Wall of Two Story ICF Structure Supporting Wood Frame Floors and Roof
Number and length of shear walls provided

## Lintel Details and Tables



## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS



Detail L. 2. Lintel Stirrup Detail.

## Detail L. 3. Lintel Section

LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING


Detail L. 4. Lintel Span with Less Than 305mm (12") of Wall Between Openings.


Detail L. 5. Lintel Span with Less Than 610 mm ( 24 ") of Wall Between Openings, and Openings Are Greater Than 1.53m (5'-0") in Length.

## LOGIX ${ }^{\oplus}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table L1 6" Lintel Reinforcement with Uniformly Distributed Load

Lintel Span		Lintel - 6"'Thick x 8" Deep (150mm Thick x 200mm Deep), s = 3" (75mm)																	
		Uniformly Distributed Load																	
		7.5kN/m		$11 \mathrm{kN} / \mathrm{m}$		$14.5 \mathrm{kN} / \mathrm{m}$		$18 \mathrm{kN} / \mathrm{m}$		$21.5 \mathrm{kN} / \mathrm{m}$		$25.5 \mathrm{kN} / \mathrm{m}$		29kN/m		33kN/m		$36.5 \mathrm{kN} / \mathrm{m}$	
		$500 \mathrm{lb} / \mathrm{ft}$		$750 \mathrm{lb} / \mathrm{ft}$		$1000 \mathrm{lb} / \mathrm{ft}$		1250lb/ft		$1500 \mathrm{lb} / \mathrm{ft}$		17501b/ft		2000lb/ft		2250lb/ft		$2500 \mathrm{lb} / \mathrm{ft}$	
mm	(t)	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirrup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \hline \text { Stirup } \\ & \text { End } \\ & \text { Distance } \\ & \hline \end{aligned}$	Bottom Reinf. Steel	$\begin{gathered} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{gathered}$	Bottom Reinf. Steel	$\begin{gathered} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{gathered}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-10M	$\begin{aligned} & 150 \\ & (6) \\ & \hline \end{aligned}$	1-15M	$\begin{aligned} & 150 \\ & (6) \\ & \hline \end{aligned}$	1-15M	$\begin{gathered} 225 \\ (9) \\ \hline \end{gathered}$	1-15M	$\begin{gathered} 225 \\ (9) \\ \hline \end{gathered}$	1-15M	$\begin{aligned} & \hline 300 \\ & (12) \\ & \hline \end{aligned}$	1-15M	$\begin{array}{r} 300 \\ (12) \\ \hline \end{array}$
1200	(4)	1-10M	0	1-15M	0	1-15M	$\begin{aligned} & 150 \\ & (6) \\ & \hline \end{aligned}$	1-15M	$\begin{gathered} 225 \\ (9) \\ \hline \end{gathered}$	1-20M	$\begin{aligned} & 300 \\ & (12) \\ & \hline \end{aligned}$	1-20M	$\begin{array}{r} 375 \\ (15) \\ \hline \end{array}$						
1500	(5)	1-15M	0	1-15M	$\begin{aligned} & 150 \\ & (6) \\ & \hline \end{aligned}$	1-20M	$\begin{array}{r} 300 \\ (12) \\ \hline \end{array}$												
1800	(6)	1-15M	0	1-20M	$\begin{array}{r} 300 \\ (12) \\ \hline \end{array}$														
2400	(8)																		
3000	(10)																		
3600	(12)																		
4200	(14)																		
4800	(16)																		
5400	(18)																		
6000	(20)																		

## NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
2. Do not install more than $1-20 \mathrm{M}$ bottom bar or equivalent combination of smaller bars. Bottom reinforcement located 89 mm (3.5") from bottom of lintel.
This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing".
Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$.

Lintel Span		Lintel - 6" Thick x 12" Deep (150mm Thick x 300mm Deep), s = 6" (150mm)																	
		Uniformly Distributed Load																	
		7.5kN/m		$11 \mathrm{kN} / \mathrm{m}$		$14.5 \mathrm{kN} / \mathrm{m}$		$18 \mathrm{kN} / \mathrm{m}$		$21.5 \mathrm{kN} / \mathrm{m}$		$25.5 \mathrm{kN} / \mathrm{m}$		29kN/m		$33 \mathrm{kN} / \mathrm{m}$		$36.5 \mathrm{kN} / \mathrm{m}$	
		500	$\mathrm{lb} / \mathrm{ft}$	750	$\mathrm{lb} / \mathrm{ft}$	1000	lb/ft	1250	$\mathrm{lb} / \mathrm{ft}$	1500	$\mathrm{lb} / \mathrm{ft}$	175	$\mathrm{lb} / \mathrm{ft}$	200	Olb/ft	225	$\mathrm{lb} / \mathrm{ft}$	250	lb/ft
mm	(t)	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	Stirup End Distance	Bottom Reinf. Steel	$\substack{\text { Stirup } \\ \text { End } \\ \text { Distance }}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirupp } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$
900	(3)	1-10M	0	1-10M	$\begin{array}{r} 300 \\ (12) \\ \hline \end{array}$	1-10M	$\begin{aligned} & 300 \\ & (12) \\ & \hline \end{aligned}$	1-15M	$\begin{array}{r} 300 \\ (12) \\ \hline \end{array}$	1-15M	$\begin{array}{r} 300 \\ (12) \\ \hline \end{array}$								
1200	(4)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	$\begin{aligned} & 300 \\ & (12) \\ & \hline \end{aligned}$	1-15M	$\begin{aligned} & 300 \\ & (12) \end{aligned}$	1-15M	300   $(12)$	1-15M	$\begin{array}{r} 450 \\ (18) \end{array}$	1-15M	$\begin{array}{r} 450 \\ (18) \end{array}$
1500	(5)	1-10M	0	1-15M	0	1-15M	300 (12)	1-15M	$\begin{aligned} & 300 \\ & (12) \\ & \hline \end{aligned}$	1-15M	$\begin{aligned} & 450 \\ & (18) \\ & \hline \end{aligned}$	1-15M	$\begin{aligned} & 450 \\ & (18) \\ & \hline \end{aligned}$	1-20M	$\begin{aligned} & 450 \\ & (18) \\ & \hline \end{aligned}$	1-20M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	1-20M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$
1800	(6)	1-15M	0	1-15M	0	1-15M	300 (12)	1-15M	$\begin{aligned} & 450 \\ & (18) \end{aligned}$	1-20M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$	1-20M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$	2-15M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$	2-15M	$\begin{array}{r} 750 \\ (30) \\ \hline \end{array}$	$\begin{gathered} \text { 1-15M + } \\ 1-20 \mathrm{M} \end{gathered}$	$\begin{array}{r} 750 \\ (30) \end{array}$
2400	(8)	1-15M	0	1-20M	$\begin{array}{r} 450 \\ (18) \end{array}$	2-15M	600 (24)	2-15M	$\begin{array}{r} 750 \\ (30) \end{array}$	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 900 \\ & (36) \end{aligned}$								
3000	(10)	1-20M	$\begin{aligned} & 450 \\ & (18) \\ & \hline \end{aligned}$	2-15M	$\begin{array}{r} 750 \\ (30) \\ \hline \end{array}$														
3600	(12)	$\begin{array}{\|c\|} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \\ \hline \end{array}$	$\begin{array}{r} 750 \\ (30) \\ \hline \end{array}$																
4200	(14)																		
4800	(16)																		
5400	(18)																		
6000	(20)																		

## NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
2. Do not install more than 2-20M bottom bar or equivalent combination of smaller bars.
3. Bottom reinforcement located $89 \mathrm{~mm}(3.5$ ") from bottom of lintel.
4. This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing".
5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) $>0.4$.

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table L1 Continued

Lintel Span		Lintel - 6"Thick x 16" Deep (150mm Thick x 400mm Deep), s = 8" (200mm)																	
		Uniformly Distributed Load																	
		$7.5 \mathrm{kN} / \mathrm{m}$		$11 \mathrm{kN} / \mathrm{m}$		$14.5 \mathrm{kN} / \mathrm{m}$		$18 \mathrm{kN} / \mathrm{m}$		$21.5 \mathrm{kN} / \mathrm{m}$		$25.5 \mathrm{kN} / \mathrm{m}$		29kN/m		$36.5 \mathrm{kN} / \mathrm{m}$		$43.5 \mathrm{kN} / \mathrm{m}$	
		$500 \mathrm{lb} / \mathrm{ft}$		$750 \mathrm{lb} / \mathrm{ft}$		$1000 \mathrm{lb} / \mathrm{ft}$		1250lb/ft		1500lb/ft		1750lb/ft		2000lb/ft		$2500 \mathrm{lb} / \mathrm{ft}$		$3000 \mathrm{lb} / \mathrm{ft}$	
mm	(t)	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \hline \text { Stirrup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirrup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirrup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$
900	(3)	1-10M	0	1-10M	$\begin{array}{r} 400 \\ (16) \\ \hline \end{array}$	1-10M	$\begin{array}{r} 400 \\ (16) \\ \hline \end{array}$												
1200	(4)	1-10M	0	1-10M	$\begin{aligned} & 400 \\ & (16) \end{aligned}$	1-15M	$\begin{aligned} & \hline 400 \\ & (16) \end{aligned}$	1-15M	$\begin{aligned} & 400 \\ & (16) \end{aligned}$	1-15M	$\begin{aligned} & 400 \\ & (16) \end{aligned}$								
1500	(5)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	$\begin{array}{r} 400 \\ (16) \\ \hline \end{array}$	1-15M	$\begin{aligned} & 400 \\ & (16) \\ & \hline \end{aligned}$	1-15M	$\begin{array}{r} 400 \\ (16) \\ \hline \end{array}$	1-15M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	1-15M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$
1800	(6)	1-10M	0	1-15M	0	1-15M	0	1-15M	$\begin{array}{r} 400 \\ (16) \\ \hline \end{array}$	1-15M	$\begin{array}{r} 400 \\ (16) \\ \hline \end{array}$	1-15M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	1-15M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$	1-20M	$\begin{array}{r} 800 \\ (32) \\ \hline \end{array}$	2-20M	$\begin{array}{r} 800 \\ (32) \\ \hline \end{array}$
2400	(8)	1-15M	0	1-15M	$\begin{aligned} & 400 \\ & (16) \\ & \hline \end{aligned}$	1-15M	$\begin{aligned} & 400 \\ & (16) \\ & \hline \end{aligned}$	1-20M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	1-20M	$\begin{array}{r} 800 \\ (32) \\ \hline \end{array}$	2-15M	$\begin{array}{r} 800 \\ (32) \\ \hline \end{array}$	2-15M	$\begin{aligned} & 1000 \\ & (40) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 1-15M }+ \\ 1-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1000 \\ & (40) \\ & \hline \end{aligned}$		
3000	(10)	1-15M	0	1-20M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	2-15M	$\begin{array}{r} 800 \\ (32) \\ \hline \end{array}$	2-15M	$\begin{aligned} & 1000 \\ & (40) \\ & \hline \end{aligned}$	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1000 \\ & (40) \\ & \hline \end{aligned}$	2-20M	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$	$\begin{gathered} 1-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$				
3600	(12)	1-20M	$\begin{aligned} & 400 \\ & (16) \\ & \hline \end{aligned}$	2-15M	$\begin{aligned} & 800 \\ & (32) \\ & \hline \end{aligned}$	$\underset{1-20 \mathrm{M}}{\substack{1-15 \mathrm{M}}}$	$\begin{aligned} & 1000 \\ & (40) \end{aligned}$	$\begin{gathered} \text { T-10M + } \\ \text { 2-20M } \end{gathered}$	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$	$\begin{gathered} 1-15 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1400 \\ & (56) \\ & \hline \end{aligned}$								
4200	(14)	2-15M	$\begin{aligned} & 800 \\ & (32) \\ & \hline \end{aligned}$	2-20M	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$	$\begin{gathered} 1-15 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1400 \\ & (56) \\ & \hline \end{aligned}$												
4800	(16)	2-20M	$\begin{aligned} & 1000 \\ & (40) \\ & \hline \end{aligned}$	$\begin{gathered} 1-15 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1400 \\ & (56) \\ & \hline \end{aligned}$														
5400	(18)	$\begin{aligned} & \hline \text { 1-15M + } \\ & 2-20 \mathrm{M} \end{aligned}$	$\begin{aligned} & 1400 \\ & (56) \\ & \hline \end{aligned}$																
6000	(20)																		

## NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

Do not install more than 3-20M bottom bar or equivalent combination of smaller bars.
Bottom reinforcement located $89 \mathrm{~mm}\left(3.5^{\prime \prime}\right)$ from bottom of lintel.
This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing".
Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$.

Lintel Span		Lintel - ${ }^{\prime \prime}$ Thick x 24" Deep (150mm Thick x 600mm Deep), s = 12" (300mm)																	
		Uniformly Distributed Load																	
		$7.5 \mathrm{kN} / \mathrm{m}$		$11 \mathrm{kN} / \mathrm{m}$		$\frac{14.5 \mathrm{kN} / \mathrm{m}}{1000 \mathrm{lb} / \mathrm{ft}}$		$\frac{18 \mathrm{kN} / \mathrm{m}}{1250 \mathrm{lb} / \mathrm{ft}}$		$\frac{21.5 \mathrm{kN} / \mathrm{m}}{1500 \mathrm{lb} / \mathrm{ft}}$		$\frac{29 \mathrm{kN} / \mathrm{m}}{2000 \mathrm{lb} / \mathrm{ft}}$		$\frac{36.5 \mathrm{kN} / \mathrm{m}}{2500 \mathrm{lb} / \mathrm{ft}}$		$\frac{43.5 \mathrm{kN} / \mathrm{m}}{3000 \mathrm{lb} / \mathrm{ft}}$		$\frac{51 \mathrm{kN} / \mathrm{m}}{3500 \mathrm{lb} / \mathrm{ft}}$	
		500	$\mathrm{lb} / \mathrm{ft}$	750	lb/ft														
mm	(t)	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \begin{array}{c} \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel		Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Steel	$\begin{array}{\|c\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c} \begin{array}{c} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c} \hline \begin{array}{c} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c} \hline \begin{array}{c} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c} \hline \begin{array}{c} \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$
900	(3)	1-10M	0	1-10M	$\begin{aligned} & 300 \\ & (12) \end{aligned}$														
1200	(4)	1-10M	0	1-10M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$	1-10M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	1-15M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$										
1500	(5)	1-10M	0	1-15M	$\begin{aligned} & \hline 600 \\ & (24) \\ & \hline \end{aligned}$	1-15M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	1-15M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	1-15M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$								
1800	(6)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$	1-15M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	1-15M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	1-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$
2400	(8)	1-10M	0	1-15M	0	1-15M	0	1-15M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$	1-15M	$\begin{aligned} & \hline 600 \\ & (24) \\ & \hline \end{aligned}$	1-20M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	1-20M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	2-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	2-15M	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$
3000	(10)	1-15M	0	1-15M	0	1-15M	$\begin{aligned} & \hline 600 \\ & (24) \\ & \hline \end{aligned}$	1-20M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	1-20M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	2-15M	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$	2-20M	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$		
3600	(12)	1-15M	0	1-20M	$\begin{array}{r} \hline 600 \\ (24) \\ \hline \end{array}$	1-20M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	2-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	2-15M	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$	2-20M	$\begin{aligned} & 1500 \\ & (60) \\ & \hline \end{aligned}$	$\begin{gathered} 1-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1500 \\ & (60) \\ & \hline \end{aligned}$				
4200	(14)	1-20M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$	1-20M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	2-15M	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 1-15M + } \\ 1-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1500 \\ & (60) \\ & \hline \end{aligned}$	2-20M	$\begin{aligned} & 1500 \\ & (60) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 1-15M + } \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1800 \\ & (72) \\ & \hline \end{aligned}$						
4800	(16)	1-20M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	2-15M	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1500 \\ & (60) \\ & \hline \end{aligned}$	$\begin{gathered} 1-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1800 \\ & (72) \\ & \hline \end{aligned}$	$\begin{gathered} 1-15 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1800 \\ & (72) \\ & \hline \end{aligned}$	$\begin{gathered} 1-15 \mathrm{M}+ \\ 3-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1950 \\ & (78) \\ & \hline \end{aligned}$						
5400	(18)	2-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	2-20M	$\begin{aligned} & 1500 \\ & (60) \\ & \hline \end{aligned}$	$\begin{gathered} \begin{array}{c} \text { 1-10M+ } \\ 2-20 \mathrm{M} \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 1800 \\ (72) \\ \hline \end{gathered}$	3-20M	$\begin{array}{r} 2100 \\ (84) \\ \hline \end{array}$	$\begin{gathered} 1-15 \mathrm{M}+ \\ 3-20 \mathrm{M} \end{gathered}$	$\begin{gathered} 2100 \\ (84) \\ \hline \end{gathered}$								
6000	(20)	$\begin{gathered} \substack{1-15 \mathrm{M}++1-20 \mathrm{M}} \end{gathered}$	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$	$\begin{gathered} \substack{1-10 \mathrm{M} \\ \text { 2-20M }} \end{gathered}$	$\begin{aligned} & 1800 \\ & (72) \\ & \hline \end{aligned}$	3-20M	$\begin{aligned} & 2100 \\ & (84) \\ & \hline \end{aligned}$	$\begin{gathered} \text { T-15M + } \\ 3-20 \mathrm{M} \end{gathered}$	$\begin{gathered} 2400 \\ (96) \\ \hline \end{gathered}$										

## NOTES

[^14]Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
Bottom reinforcement located 89 mm (3.5") from bottom of lintel.
4. This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing".
5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$.

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table L1 Continued

Lintel Span		Lintel - 6 "Thick x 32" Deep (150mm Thick x 800mm Deep), s = 18" (450mm)																	
		Uniformly Distributed Load																	
		7.5kN/m		$11 \mathrm{kN} / \mathrm{m}$		$14.5 \mathrm{kN} / \mathrm{m}$		$18 \mathrm{kN} / \mathrm{m}$		$21.5 \mathrm{kN} / \mathrm{m}$		29kN/m		$36.5 \mathrm{kN} / \mathrm{m}$		$43.5 \mathrm{kN} / \mathrm{m}$		$51 \mathrm{kN} / \mathrm{m}$	
		500 v		$750 \mathrm{lb} / \mathrm{ft}$		$1000 \mathrm{lb} / \mathrm{ft}$		12501b/tt		$1500 \mathrm{lb} / \mathrm{ft}$		2000lb/ft		$2500 \mathrm{lb} / \mathrm{ft}$		$3000 \mathrm{lb} / \mathrm{ft}$		3500lb/ft	
mm	(t)	Bottom Reinf. Steel	$\begin{array}{\|c} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \hline \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Stee	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \begin{array}{c} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{gathered} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{gathered}$
900	(3)	1-10M	0																
1200	(4)	1-10M	0	1-10M	$\begin{aligned} & 450 \\ & (18) \end{aligned}$	1-10M	$\begin{aligned} & 450 \\ & (18) \end{aligned}$												
1500	(5)	1-10M	0	1-10M	$\begin{array}{r} 450 \\ (18) \\ \hline \end{array}$	1-15M	$\begin{array}{r} 450 \\ (18) \\ \hline \end{array}$	1-15M	$\begin{array}{r} 450 \\ (18) \\ \hline \end{array}$										
1800	(6)	1-10M	0	1-15M	$\begin{aligned} & \hline 900 \\ & (36) \\ & \hline \end{aligned}$	1-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	1-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	1-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$								
2400	(8)	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	$\begin{aligned} & \hline 900 \\ & (36) \end{aligned}$	1-20M	$\begin{aligned} & 900 \\ & (36) \end{aligned}$	1-20M	$\begin{aligned} & 900 \\ & (36) \end{aligned}$	1-20M	$\begin{aligned} & 900 \\ & (36) \end{aligned}$	1-20M	$\begin{aligned} & 900 \\ & (36) \end{aligned}$
3000	(10)	1-15M	0	1-15M	0	1-15M	0	1-20M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	1-20M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	1-20M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	2-15M	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$	2-15M	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$	$\underset{1-20 \mathrm{M}}{\substack{1-15 \mathrm{M} \\ \hline}}$	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$
3600	(12)	1-15M	0	1-20M	0	1-20M	$\begin{aligned} & \hline 900 \\ & (36) \\ & \hline \end{aligned}$	1-20M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	1-20M	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$	2-15M	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$				
4200	(14)	1-20M	0	1-20M	$\begin{aligned} & \hline 900 \\ & (36) \\ & \hline \end{aligned}$	1-20M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	2-15M	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$	2-15M	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	$\begin{gathered} 1800 \\ (72) \\ \hline \end{gathered}$						
4800	(16)	1-20M	0	1-20M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	2-15M	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 1-15M + } \\ \text { 1-20M } \end{gathered}$	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 1-15M + } \\ \text { 1-20M } \end{gathered}$	$\begin{aligned} & 1800 \\ & (72) \\ & \hline \end{aligned}$	$\begin{gathered} \text { T-10M + } \\ \text { 2-20M } \end{gathered}$	$\begin{aligned} & 1800 \\ & (72) \\ & \hline \end{aligned}$						
5400	(18)	1-20M	$\begin{aligned} & \hline 900 \\ & (36) \\ & \hline \end{aligned}$	2-15M	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{array}$	$\begin{aligned} & 1800 \\ & (72) \\ & \hline \end{aligned}$	2-20M	$\begin{aligned} & 1800 \\ & (72) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1-10 \mathrm{M}+ \\ & 2-20 \mathrm{M} \\ & \hline \end{aligned}$	$\begin{gathered} 2250 \\ (90) \\ \hline \end{gathered}$								
6000	(20)	2-15M	$\begin{aligned} & 900 \\ & (36) \end{aligned}$	$\begin{gathered} \text { 1-15M++} \\ 1-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1350 \\ & (54) \end{aligned}$	2-20M	$\begin{aligned} & 1800 \\ & (72) \end{aligned}$	$\underset{2-20 \mathrm{M}}{\text { 1-10M + }}$	$\begin{gathered} 2250 \\ (90) \end{gathered}$	3-20M	$\begin{gathered} 2250 \\ (90) \end{gathered}$								

## NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
Bottom reinforcement located $89 \mathrm{~mm}(3.5$ ") from bottom of lintel.
This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing".
Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$.

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table L2 8" Lintel Reinforcement with Uniformly Distributed Load

Lintel Span		Lintel - 8" Thick x 8" Deep (200mm Thick x 200mm Deep), s = 3" (75mm)																	
		Uniformly Distributed Load																	
		7.5kN/m		$11 \mathrm{kN} / \mathrm{m}$		$14.5 \mathrm{kN} / \mathrm{m}$		$18 \mathrm{kN} / \mathrm{m}$		$21.5 \mathrm{kN} / \mathrm{m}$		$25.5 \mathrm{kN} / \mathrm{m}$		29kN/m		33kN/m		$36.5 \mathrm{kN} / \mathrm{m}$	
		5001b/ft		$750 \mathrm{lb} / \mathrm{ft}$		$1000 \mathrm{lb} / \mathrm{ft}$		$1250 \mathrm{lb} / \mathrm{ft}$				1750lb/ft		$2000 \mathrm{lb} / \mathrm{ft}$		22501b/ft		$2500 \mathrm{lb} / \mathrm{ft}$	
mm	(t)	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	Stirup End Distance	Bottom Reinf. Steel	Stirup End Distance	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	Stirup End Distance
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	$\begin{aligned} & 150 \\ & (6) \\ & \hline \end{aligned}$	1-15M	$\begin{aligned} & 150 \\ & (6) \\ & \hline \end{aligned}$	1-15M	$\begin{gathered} 225 \\ (9) \\ \hline \end{gathered}$	1-15M	$\begin{gathered} 225 \\ (9) \\ \hline \end{gathered}$
1200	(4)	1-15M	0	1-15M	0	1-15M	0	1-15M	$\begin{aligned} & \hline 150 \\ & (6) \\ & \hline \end{aligned}$	1-15M	$\begin{aligned} & \hline 150 \\ & (6) \\ & \hline \end{aligned}$	1-20M	$\begin{gathered} 225 \\ (9) \\ \hline \end{gathered}$	1-20M	$\begin{array}{r} 300 \\ (12) \\ \hline \end{array}$				
1500	(5)	1-15M	0	1-15M	0	1-20M	$\begin{aligned} & 150 \\ & (6) \\ & \hline \end{aligned}$	1-20M	$\begin{aligned} & 225 \\ & (9) \\ & \hline \end{aligned}$										
1800	(6)	1-15M	0	1-20M	$\begin{aligned} & 150 \\ & (6) \\ & \hline \end{aligned}$														
2400	(8)																		
3000	(10)																		
3600	(12)																		
4200	(14)																		
4800	(16)																		
5400	(18)																		
6000	(20)																		

## NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
. Do not install more than $2-15 \mathrm{M}$ bottom bar or equivalent combination of smaller bars.
Bottom reinforcement located $89 \mathrm{~mm}\left(3.5^{\prime \prime}\right)$ from bottom of lintel.
2. This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing".
3. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) $>0.4$.

Lintel Span		Lintel - 8"'Thick x 12" Deep (200mm Thick x 300mm Deep), s = 6" (150mm)																	
		Uniformly Distributed Load																	
		7.5kN/m		$11 \mathrm{kN} / \mathrm{m}$		$14.5 \mathrm{kN} / \mathrm{m}$		18kN/m		$21.5 \mathrm{kN} / \mathrm{m}$		$25.5 \mathrm{kN} / \mathrm{m}$		29kN/m		33kN/m		$36.5 \mathrm{kN} / \mathrm{m}$	
		500	$\mathrm{lb} / \mathrm{ft}$	750	$\mathrm{lb} / \mathrm{ft}$	1000	$\mathrm{lb} / \mathrm{ft}$	1250	$\mathrm{lb} / \mathrm{ft}$	1500	lb/ft	1750	lb/ft	200	Olb/ft	225	lb/ft	250	lb/ft
mm	(t)	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	$\begin{aligned} & \text { Bottom } \\ & \text { Reinf. } \\ & \text { Steel } \end{aligned}$	$\begin{gathered} \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{gathered}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\substack{\text { Stirup } \\ \text { End } \\ \text { Distance }}$	Bottom Reinf. Steel	$\begin{array}{\|c} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$
900	(3)	1-10M	0	1-15M	0	1-15M	$\begin{aligned} & 300 \\ & (12) \end{aligned}$												
1200	(4)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	$\begin{aligned} & 300 \\ & (12) \\ & \hline \end{aligned}$	1-15M	$\begin{array}{r} 300 \\ (12) \\ \hline \end{array}$	1-15M	$\begin{aligned} & 300 \\ & (12) \end{aligned}$	1-15M	$\begin{array}{r} 300 \\ (12) \\ \hline \end{array}$
1500	(5)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	$\begin{aligned} & \hline 300 \\ & (12) \\ & \hline \end{aligned}$	1-15M	$\begin{array}{r} 300 \\ (12) \\ \hline \end{array}$	1-15M	$\begin{array}{r} 300 \\ (12) \\ \hline \end{array}$	1-20M	$\begin{array}{r} 450 \\ (18) \\ \hline \end{array}$	1-20M	$\begin{array}{r} 450 \\ (18) \\ \hline \end{array}$
1800	(6)	1-15M	0	1-15M	0	1-15M	0	1-15M	$\begin{array}{r} 300 \\ (12) \\ \hline \end{array}$	1-20M	$\begin{array}{r} 300 \\ (12) \\ \hline \end{array}$	1-20M	$\begin{aligned} & 450 \\ & (18) \\ & \hline \end{aligned}$	2-15M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	2-15M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$	2-15M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$
2400	(8)	1-15M	0	1-20M	0	1-20M	$\begin{array}{r} 450 \\ (18) \\ \hline \end{array}$	2-15M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	$\begin{gathered} 1-15 \mathrm{M}++ \\ 1-20 \mathrm{M} \end{gathered}$	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	2-20M	$\begin{array}{r} 750 \\ (30) \\ \hline \end{array}$	$\begin{gathered} \begin{array}{c} \text { 1-10M } \\ \\ 2-200 \end{array}+ \end{gathered}$	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$				
3000	(10)	1-20M	0	2-15M	$\begin{aligned} & 450 \\ & (18) \end{aligned}$	2-20M	$\begin{array}{r} 750 \\ (30) \\ \hline \end{array}$	$\begin{gathered} \hline 1-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$										
3600	(12)		$\begin{array}{r} 300 \\ (12) \\ \hline \end{array}$	$\begin{gathered} \begin{array}{c} \text { 1-10M + } \\ \text { 2-200 } \end{array} \end{gathered}$	$\begin{array}{r} 750 \\ (30) \\ \hline \end{array}$														
4200	(14)	$\begin{array}{\|c\|} \hline 1-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \\ \hline \end{array}$	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$																
4800	(16)																		
5400	(18)																		
6000	(20)																		

## NOTES

[^15]. Do not install more than $1-15 \mathrm{M}+2-20 \mathrm{M}$ bottom bar or equivalent combination of smaller bars.
Bottom reinforcement located $89 \mathrm{~mm}\left(3.5^{\prime \prime}\right)$ from bottom of lintel.
4. This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing".
5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$.

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table L2 Continued

Lintel Span		Lintel - 8"'Thick x 16" Deep (200mm Thick x 400mm Deep), s = 8" (200mm)																	
		Uniformly Distributed Load																	
		7.5kN/m		$11 \mathrm{kN} / \mathrm{m}$		$14.5 \mathrm{kN} / \mathrm{m}$		$18 \mathrm{kN} / \mathrm{m}$		$21.5 \mathrm{kN} / \mathrm{m}$		$25.5 \mathrm{kN} / \mathrm{m}$		29kN/m		$36.5 \mathrm{kN} / \mathrm{m}$		$43.5 \mathrm{kN} / \mathrm{m}$	
		$500 \mathrm{lb} / \mathrm{ft}$		$750 \mathrm{lb} / \mathrm{ft}$		$1000 \mathrm{lb} / \mathrm{ft}$		1250lb/ft		$1500 \mathrm{lb} / \mathrm{ft}$		1750lb/ft		$2000 \mathrm{lb} / \mathrm{ft}$		$2500 \mathrm{lb} / \mathrm{ft}$		$3000 \mathrm{lb} / \mathrm{ft}$	
mm	(t)	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirrup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	Stirup End Distance	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirrup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$
900	(3)	1-10M	0																
1200	(4)	1-10M	0	1-15M	0	1-15M	$\begin{aligned} & 400 \\ & (16) \\ & \hline \end{aligned}$	1-15M	$\begin{aligned} & 400 \\ & (16) \\ & \hline \end{aligned}$										
1500	(5)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	$\begin{array}{r} 400 \\ (16) \\ \hline \end{array}$	1-15M	$\begin{aligned} & \hline 400 \\ & (16) \\ & \hline \end{aligned}$	1-15M	$\begin{array}{r} 400 \\ (16) \\ \hline \end{array}$	1-15M	$\begin{array}{r} 400 \\ (16) \\ \hline \end{array}$
1800	(6)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	$\begin{aligned} & \hline 400 \\ & (16) \\ & \hline \end{aligned}$	1-15M	$\begin{aligned} & 400 \\ & (16) \\ & \hline \end{aligned}$	1-15M	$\begin{aligned} & 400 \\ & (16) \\ & \hline \end{aligned}$	1-20M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	1-20M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$
2400	(8)	1-15M	0	1-15M	0	1-15M	0	1-20M	$\begin{array}{r} 400 \\ (16) \\ \hline \end{array}$	1-20M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	2-15M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	2-15M	$\begin{array}{r} 800 \\ (32) \\ \hline \end{array}$	$\begin{gathered} \text { 1-15M + + } \\ 1-20 \mathrm{M} \end{gathered}$	$\begin{array}{r} 800 \\ (32) \\ \hline \end{array}$	2-20M	$\begin{aligned} & 1000 \\ & (40) \\ & \hline \end{aligned}$
3000	(10)	1-15M	0	1-20M	0	2-15M	$\begin{aligned} & 400 \\ & (16) \end{aligned}$	2-15M	$\begin{aligned} & 800 \\ & (32) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	$\begin{array}{r} 800 \\ (32) \\ \hline \end{array}$	2-20M	$\begin{aligned} & 1000 \\ & (40) \end{aligned}$	$\begin{aligned} & \hline \text { 1-10M + } \\ & 2-20 \mathrm{M} \end{aligned}$	$\begin{aligned} & 1000 \\ & (40) \end{aligned}$	$\begin{gathered} \hline 1-10 \mathrm{M}+ \\ 3-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1-10 \mathrm{M}+ \\ 3-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$
3600	(12)	1-20M	0	2-15M	$\begin{aligned} & \hline 600 \\ & (24) \\ & \hline \end{aligned}$	$\underset{1-20 \mathrm{M}}{\substack{1-15 \mathrm{M}}}$	$\begin{array}{r} 800 \\ (32) \\ \hline \end{array}$	2-20M	$\begin{aligned} & 1000 \\ & (40) \\ & \hline \end{aligned}$	$\underset{2-20 \mathrm{M}}{\mathrm{~T}-10 \mathrm{M}}+$	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$	3-20M	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 1-10M + } \\ 3-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1400 \\ & (56) \\ & \hline \end{aligned}$				
4200	(14)	2-15M	$\begin{array}{r} 400 \\ (16) \\ \hline \end{array}$	2-20M	$\begin{array}{r} 800 \\ (32) \\ \hline \end{array}$	$\begin{aligned} & \text { 1-10M+} \\ & 2-20 \mathrm{M} \end{aligned}$	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$	3-20M	$\begin{aligned} & 1400 \\ & (56) \\ & \hline \end{aligned}$										
4800	(16)	2-20M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$	$\begin{gathered} 1-15 \mathrm{M}+ \\ 2-20 \mathrm{M} \\ \hline \end{gathered}$	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$	$\begin{gathered} 1-10 \mathrm{M}+ \\ 3-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1400 \\ & (56) \\ & \hline \end{aligned}$												
5400	(18)	$\begin{gathered} \begin{array}{c} \text { 1-10M } \\ 2-20 \mathrm{C} \end{array}+ \end{gathered}$	$\begin{aligned} & 1000 \\ & (40) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 1-10M + } \\ 3-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1400 \\ & (56) \\ & \hline \end{aligned}$														
6000	(20)	3-20M	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$																

## NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
2. $\quad$ Do not install more than $4-20 \mathrm{M}$ bottom bar or equivalent combination of smaller bars.
3. $\quad$ Bottom reinforcement located 89 mm ( 3.5 " from bottom of lintel.
4. This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing"
5. $\quad$ Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$.

Lintel Span		Lintel - 8"'Thick x 24" Deep ( 200 mm Thick $\times 600 \mathrm{~mm}$ Deep), $\mathrm{s}=12$ " $(300 \mathrm{~mm}$ )																			
		Uniformly Distributed Load																			
		$7.5 \mathrm{kN} / \mathrm{m}$		$11 \mathrm{kN} / \mathrm{m}$		$14.5 \mathrm{kN} / \mathrm{m}$		$18 \mathrm{kN} / \mathrm{m}$		$\frac{21.5 \mathrm{kN} / \mathrm{m}}{1500 \mathrm{lb} / \mathrm{ft}}$		$\frac{29 \mathrm{kN} / \mathrm{m}}{2000 \mathrm{lb} / \mathrm{ft}}$		$\frac{36.5 \mathrm{kN} / \mathrm{m}}{2500 \mathrm{lb} / \mathrm{ft}}$		$\frac{43.5 \mathrm{kN} / \mathrm{m}}{3000 \mathrm{lb} / \mathrm{ft}}$		$51 \mathrm{kN} / \mathrm{m}$			
		500	lb/tt	750	$\mathrm{lb} / \mathrm{tt}$	1000	lb/t		$\mathrm{Olb} / \mathrm{ft}$			3500	$\mathrm{lb} / \mathrm{tt}$								
mm	(t)	$\begin{gathered} \hline \text { Bottom } \\ \text { Reinf. } \\ \text { Steel } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Stimup } \\ \text { End } \\ \text { Eistance } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Botom } \\ & \text { Reinf. } \\ & \text { Steel } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|c} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	$\begin{gathered} \hline \text { Botom } \\ \text { Reinf. } \\ \text { Steel } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	$\begin{aligned} & \text { Botom } \\ & \text { Reinf. } \\ & \text { Steel } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{gathered}$	$\begin{aligned} & \hline \text { Botom } \\ & \text { Reinf. } \\ & \text { Steel } \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline \text { Stirup } \\ \text { End } \\ \text { Eistance } \\ \hline \end{array}$			$\begin{aligned} & \hline \text { Botom } \\ & \text { Reinf. } \\ & \text { Steel } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	$\begin{gathered} \hline \text { Botom } \\ \text { Reinf. } \\ \text { Steel } \\ \hline \end{gathered}$	$\begin{array}{\|c\|c} \hline \text { Stirup } \\ \text { End } \\ \text { Eistance } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \begin{array}{c} \text { Botom } \\ \text { Reinf. } \\ \text { R Steel } \\ \hline \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	$\begin{aligned} & \text { Botom } \\ & \text { Reinf: } \\ & \text { Reitee } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Eistance } \\ \hline \end{array}$
900	(3)	1-10M	0																		
1200	(4)	1-10M	0	1-10M	0	1-10M	0	-10M	0	1-10M	0	1-10M	0	1-10M	0	4-10M	0	1-15M	$\begin{aligned} & 600 \\ & (24) \end{aligned}$		
1500	(5)	1-10M	0	1-15M	0	1-15M	0	1-15M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$	1-15M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$										
1800	(6)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$	1-20M	$\begin{aligned} & 600 \\ & (24) \end{aligned}$	1-20M	$\begin{aligned} & 600 \\ & (24) \end{aligned}$		
2400	(8)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	1-20M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	1-20M	$\begin{aligned} & 900 \\ & (36) \\ & \hline \end{aligned}$	2-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	2-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$		
3000	(10)	1-15M	0	1-20M	0	1-20M	0	1-20M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$	1-20M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$	2-15M	$\begin{aligned} & 900 \\ & (36) \end{aligned}$	$\begin{gathered} \left.\begin{array}{c} -1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{array}\right) \end{gathered}$	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \\ \hline \end{array}$	$\begin{gathered} 1200 \\ (48) \end{gathered}$	2-20M	$\begin{aligned} & 1200 \\ & (48) \end{aligned}$		
3600	(12)	1-20M	0	1-20M	0	1-20M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$	2-15M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	2-15M	$\begin{aligned} & 900 \\ & (36) \\ & \hline \end{aligned}$		$\begin{aligned} & 1200 \\ & (48) \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { 2-10M }+ \\ 2-20 \mathrm{O} \end{array}$	$\begin{aligned} & 1500 \\ & (60) \\ & \hline \end{aligned}$						
4200	(14)	1-20M	0	2-15M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$	2-15M	$\begin{aligned} & 900 \\ & (36) \\ & \hline \end{aligned}$	$\underset{\substack{1-15 M \\ 1-20 M+}}{\substack{\text { an }}}$	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	2-20M	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$	$\begin{gathered} \substack{1-15 \mathrm{M}+\\ 2-20 \mathrm{M}} \end{gathered}$	$\begin{aligned} & 1500 \\ & (60) \\ & \hline \end{aligned}$		$\begin{aligned} & 1800 \\ & (72) \\ & \hline \end{aligned}$						
4800	(16)	2-15M	0	2-15M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	2-20M	$\begin{aligned} & 1200 \\ & (48) \end{aligned}$	$\underset{\substack{\text { p-10M } \\ \text { 2-20M }}}{+}$	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$	$\begin{gathered} \left.\begin{array}{c} 1-15 \mathrm{M}++ \\ 2-20 \mathrm{M} \end{array}\right) \end{gathered}$	$\begin{aligned} & 1500 \\ & (60) \\ & \hline \end{aligned}$	$\begin{gathered} \text { T-10M }+\underset{3-20 \mathrm{M}}{ }+\ldots \end{gathered}$	$\begin{aligned} & 1800 \\ & (72) \\ & \hline \end{aligned}$								
5400	(18)	2-15M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$	2-20M	$\begin{aligned} & 900 \\ & (36) \end{aligned}$	$\begin{gathered} \begin{array}{l} \text { P-10M }++ \\ 2-2001 \end{array} \end{gathered}$	$\begin{aligned} & 1500 \\ & (60) \end{aligned}$	$\underset{\substack{\text { 1-15M } \\ 2-20 \mathrm{M}}}{ }$	$\begin{aligned} & 1500 \\ & (60) \\ & \hline \end{aligned}$	$\begin{gathered} \text { T-10M } \\ 3-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1800 \\ & (72) \end{aligned}$										
6000	(20)	$\begin{gathered} \substack{1-15 M+\\ 1-20 \mathrm{M}+} \end{gathered}$	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	$\begin{gathered} \text { l-10M+ } \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$	3-20M	$\begin{aligned} & 1800 \\ & (72) \end{aligned}$	$\begin{gathered} \substack{1-15 \mathrm{M}+\\ 3-20 \mathrm{M}} \end{gathered}$	$\begin{aligned} & 1800 \\ & (72) \end{aligned}$												

## NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
2. Do not install more than $4-20 \mathrm{M}$ bottom bar or equivalent combination of smaller bars.

Bottom reinforcement located $89 \mathrm{~mm}\left(3.5^{\prime \prime}\right)$ from bottom of lintel.
. This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing",
5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$.

Build Anything Better.'.

Table L2 Continued

Lintel Span		Lintel - 8" Thick x 32" Deep (200mm Thick x 800mm Deep), s = 18' (450mm)																	
		Uniformly Distributed Load																	
		7.5kN/m		$11 \mathrm{kN} / \mathrm{m}$		$14.5 \mathrm{kN} / \mathrm{m}$		$18 \mathrm{kN} / \mathrm{m}$		$21.5 \mathrm{kN} / \mathrm{m}$		29kN/m		$36.5 \mathrm{kN} / \mathrm{m}$		$43.5 \mathrm{kN} / \mathrm{m}$		$51 \mathrm{kN} / \mathrm{m}$	
		5001b/ft		$750 \mathrm{lb} / \mathrm{ft}$		$1000 \mathrm{lb} / \mathrm{ft}$		1250lb/ft		$1500 \mathrm{lb} / \mathrm{ft}$		2000lb/ft		2500lb/ft		$3000 \mathrm{lb} / \mathrm{ft}$		3500lb/ft	
mm	(t)	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{gathered} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{gathered}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c} \hline \begin{array}{c} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \hline \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$
900	(3)	1-10M	0																
1200	(4)	1-10M	0																
1500	(5)	1-10M	0	1-15M	0	1-15M	$\begin{array}{r} 450 \\ (18) \\ \hline \end{array}$												
1800	(6)	1-10M	0	1-15M	0	1-15M	0	1-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	1-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$								
2400	(8)	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	$\begin{aligned} & 900 \\ & (36) \end{aligned}$	1-20M	$\begin{aligned} & 900 \\ & (36) \end{aligned}$	2-15M	$\begin{aligned} & 900 \\ & (36) \end{aligned}$	2-15M	$\begin{aligned} & 900 \\ & (36) \end{aligned}$
3000	(10)	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	$\begin{aligned} & \hline 900 \\ & (36) \\ & \hline \end{aligned}$	2-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	2-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	2-15M	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$	2-15M	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$
3600	(12)	1-15M	0	1-20M	0	1-20M	0	2-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	2-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	2-15M	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$	2-20M	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$		
4200	(14)	1-20M	0	2-15M	0	2-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	2-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	2-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	$\underset{\substack{1-15 \mathrm{M} \\ 1-20 \mathrm{M}}}{ }$	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$	$\begin{gathered} \begin{array}{c} \text { 1-10M+ } \\ 2-20 \mathrm{M} \end{array} \\ \hline \end{gathered}$	$\begin{aligned} & 1800 \\ & (72) \\ & \hline \end{aligned}$				
4800	(16)	2-15M	0	2-15M	0	2-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	$\underset{\substack{1-15 \mathrm{M} \\ 1-2 \mathrm{M}}}{ }$	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$	2-20M	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$	$\begin{gathered} \begin{array}{c} \text { 1-10M++ } \\ 2-20 \mathrm{M} \end{array} \\ \hline \end{gathered}$	$\begin{aligned} & 1800 \\ & (72) \\ & \hline \end{aligned}$						
5400	(18)	2-15M	0	2-15M	$\begin{aligned} & \hline 900 \\ & (36) \\ & \hline \end{aligned}$	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \\ \hline \end{gathered}$	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$	2-20M	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 1-10M + } \\ & 2-20 \mathrm{M} \\ & \hline \end{aligned}$	$\begin{aligned} & 1800 \\ & (72) \\ & \hline \end{aligned}$	3-20M	$\begin{gathered} 2250 \\ (90) \\ \hline \end{gathered}$						
6000	(20)	2-15M	0	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	$\begin{array}{r} 900 \\ (36) \end{array}$	2-20M	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 1-10M + } \\ \text { 2-20M } \end{gathered}$	$\begin{aligned} & 1800 \\ & (72) \end{aligned}$	3-20M	$\begin{aligned} & 1800 \\ & (72) \end{aligned}$								

## NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
Bottom reinforcement located $89 \mathrm{~mm}\left(3.5^{\prime \prime}\right)$ from bottom of lintel.
This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing".
Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$.

## LOGIX ${ }^{\oplus}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table L3 10" Lintel Reinforcement with Uniformly Distributed Load

Lintel Span		Lintel - 10"'Thick x 8" Deep (250mm Thick x 200mm Deep), s = 3" (75mm)																	
		Uniformly Distributed Load																	
		$7.5 \mathrm{kN} / \mathrm{m}$		$11 \mathrm{kN} / \mathrm{m}$		$14.5 \mathrm{kN} / \mathrm{m}$		$18 \mathrm{kN} / \mathrm{m}$		$21.5 \mathrm{kN} / \mathrm{m}$		$25.5 \mathrm{kN} / \mathrm{m}$		29kN/m		33kN/m		$36.5 \mathrm{kN} / \mathrm{m}$	
		$500 \mathrm{lb} / \mathrm{ft}$		$750 \mathrm{lb} / \mathrm{ft}$		$1000 \mathrm{lb} / \mathrm{ft}$		1250lb/ft		1500lb/ft		1750lb/ft		2000lb/ft		2250lb/ft		$2500 \mathrm{lb} / \mathrm{ft}$	
mm	(t)	Bottom Reinf. Steel	$\begin{array}{\|c} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{gathered} \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{gathered}$	Bottom Reinf. Steel	$\begin{array}{\|c} \begin{array}{c} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$	Bottom   Reinf.   Steel	$\begin{array}{\|c} \hline \begin{array}{c} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c} \begin{array}{c} \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Bottom } \\ \text { Reinf. } \\ \text { Steel } \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c} \begin{array}{c} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$
900	(3)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	$\begin{aligned} & 150 \\ & (6) \\ & \hline \end{aligned}$	2-15M	$\begin{gathered} 225 \\ (9) \\ \hline \end{gathered}$	2-15M	$\begin{gathered} 225 \\ (9) \\ \hline \end{gathered}$
1200	(4)	1-15M	0	1-20M	$\begin{gathered} 225 \\ (9) \\ \hline \end{gathered}$	2-15M	$\begin{aligned} & 300 \\ & (12) \\ & \hline \end{aligned}$												
1500	(5)	1-15M	0	1-15M	0	1-20M	0	1-20M	$\begin{aligned} & \hline 150 \\ & (6) \\ & \hline \end{aligned}$	2-15M	$\begin{gathered} 225 \\ (9) \\ \hline \end{gathered}$								
1800	(6)	1-15M	0	1-20M	0	2-15M	$\begin{aligned} & 150 \\ & (6) \\ & \hline \end{aligned}$												
2400	(8)	2-15M	0																
3000	(10)																		
3600	(12)																		
4200	(14)																		
4800	(16)																		
5400	(18)																		
6000	(20)																		

## NOTES

$$
\begin{aligned}
& \text { 1. Stirrup spacing (s) and end distance are given in "mm" and "inch" } \\
& \text { 2. Do not install more than } 2-15 \mathrm{M} \text { bottom bar or equivalent combination of smaller bars. } \\
& \text { 3. Bottom reinforcement located } 89 \mathrm{~mm}(3.5 \text { ") from bottom of lintel. } \\
& \text { 4. This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing". } \\
& \text { 5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) }>0.4 \text {. }
\end{aligned}
$$

Lintel Span		Lintel - 10" Thick x 12" Deep (250mm Thick x 300mm Deep), s = 6" (150mm)																	
		Uniformly Distributed Load																	
		7.5kN/m		$11 \mathrm{kN} / \mathrm{m}$		$14.5 \mathrm{kN} / \mathrm{m}$		$18 \mathrm{kN} / \mathrm{m}$		$\frac{21.5 \mathrm{kN} / \mathrm{m}}{1500 \mathrm{lb} / \mathrm{ft}}$		$\frac{25.5 \mathrm{kN} / \mathrm{m}}{1750 \mathrm{lb} / \mathrm{ft}}$		$\frac{29 \mathrm{kN} / \mathrm{m}}{2000 \mathrm{lb} / \mathrm{ft}}$		$\frac{33 \mathrm{kN} / \mathrm{m}}{2250 \mathrm{lb} / \mathrm{ft}}$		$\frac{36.5 \mathrm{kN} / \mathrm{m}}{2500 \mathrm{lb} / \mathrm{ft}}$	
		$500 \mathrm{lb} / \mathrm{ft}$		$750 \mathrm{lb} / \mathrm{ft}$		$1000 \mathrm{lb} / \mathrm{ft}$		12501b/ft											
mm	(t)	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l} \hline \begin{array}{l} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	Stirup   End   Distance	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \\ & \hline \end{aligned}$
900	(3)	1-10M	0	1-15M	0	1-15M	0												
1200	(4)	1-10M	0	1-10M	0	1-10M	0	1-15M	$\begin{aligned} & 300 \\ & (12) \\ & \hline \end{aligned}$	1-15M	$\begin{array}{r} 300 \\ (12) \\ \hline \end{array}$								
1500	(5)	1-10M	0	1-15M	$\begin{aligned} & \hline 300 \\ & (12) \\ & \hline \end{aligned}$	1-15M	$\begin{aligned} & \hline 300 \\ & (12) \\ & \hline \end{aligned}$	1-20M	$\begin{array}{r} 300 \\ (12) \\ \hline \end{array}$	1-20M	$\begin{aligned} & 300 \\ & (12) \\ & \hline \end{aligned}$								
1800	(6)	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	$\begin{aligned} & 300 \\ & (12) \\ & \hline \end{aligned}$	1-20M	$\begin{array}{r} 300 \\ (12) \\ \hline \end{array}$	2-15M	$\begin{array}{r} 450 \\ (18) \\ \hline \end{array}$	2-15M	$\begin{array}{r} 450 \\ (18) \\ \hline \end{array}$	2-15M	$\begin{aligned} & 450 \\ & (18) \\ & \hline \end{aligned}$
2400	(8)	1-15M	0	1-20M	0	1-20M	0	2-15M	$\begin{array}{r} 300 \\ (12) \\ \hline \end{array}$	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \\ \hline \end{gathered}$	$\begin{aligned} & 450 \\ & (18) \\ & \hline \end{aligned}$	2-20M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	2-20M	$\begin{array}{r} 750 \\ (30) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \\ \hline \end{array}$	$\begin{array}{r} 750 \\ (30) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1-15 \mathrm{M}+ \\ 2-20 \mathrm{M} \\ \hline \end{array}$	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$
3000	(10)	1-20M	0	2-15M	0	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { 1-15M } \\ 1-20 \mathrm{M} \\ \hline \end{array} \\ \hline \end{array}$	$\begin{array}{r} 450 \\ (18) \\ \hline \end{array}$	$\begin{gathered} \begin{array}{c} 1-10 \mathrm{M}++ \\ 2-20 \mathrm{M} \end{array} \end{gathered}$	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	$\begin{gathered} 1-15 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{array}{r} 750 \\ (30) \\ \hline \end{array}$								
3600	(12)	$\begin{gathered} \begin{array}{c} 1-15 \mathrm{M} \\ 1-20 \mathrm{M} \end{array},+ \end{gathered}$	0	2-20M	$\begin{array}{r} 450 \\ (18) \\ \hline \end{array}$	$\begin{gathered} \substack{1-15 \mathrm{M}++2-20 \mathrm{M}} \end{gathered}$	$\begin{array}{r} 750 \\ (30) \\ \hline \end{array}$												
4200	(14)	$\begin{aligned} & \hline 1-10 \mathrm{M}+ \\ & 2-20 \mathrm{M} \end{aligned}$	$\begin{aligned} & 300 \\ & (12) \\ & \hline \end{aligned}$	3-20M	$\begin{array}{r} 750 \\ (30) \\ \hline \end{array}$														
4800	(16)																		
5400	(18)																		
6000	(20)																		

## NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

Do not install more than 3-20M bottom bar or equivalent combination of smaller bars.
Bottom reinforcement located $89 \mathrm{~mm}\left(3.5^{\prime \prime}\right)$ from bottom of lintel.
4. This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing".
5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$.

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table L3 Continued

Lintel Span		Lintel - 10"Thick x 16" Deep (250mm Thick x 400mm Deep), s = 8" (200mm)																	
		Uniformly Distributed Load																	
		$7.5 \mathrm{kN} / \mathrm{m}$		$11 \mathrm{kN} / \mathrm{m}$		$14.5 \mathrm{kN} / \mathrm{m}$		$\frac{18 \mathrm{kN} / \mathrm{m}}{1250 \mathrm{lb} / \mathrm{ft}}$		$\frac{21.5 \mathrm{kN} / \mathrm{m}}{1500 \mathrm{lb} / \mathrm{ft}}$		$\begin{gathered} \hline \frac{25.5 \mathrm{kN} / \mathrm{m}}{1750 \mathrm{lb} / \mathrm{ft}} \end{gathered}$		$\frac{29 \mathrm{kN} / \mathrm{m}}{2000 \mathrm{lb} / \mathrm{tt}}$		$\begin{aligned} & \hline 36.5 \mathrm{kN} / \mathrm{m} \\ & \hline 2500 \mathrm{lb} / \mathrm{ft} \\ & \hline \end{aligned}$		$\frac{43.5 \mathrm{kN} / \mathrm{m}}{3000 \mathrm{lb} / \mathrm{ft}}$	
		500	lb/t	750	$\mathrm{lb} / \mathrm{tt}$	1000	$\mathrm{lb} / \mathrm{tt}$												
mm	(t)		$\begin{array}{\|c\|c} \hline \begin{array}{c} \text { Stirup } \\ \text { Ditand } \\ \text { Distance } \end{array} \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Botom } \\ & \text { Reinf. } \\ & \text { Steel } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { Botom } \\ \text { Reninf. } \\ \text { Riteel } \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { Stirup } \\ \text { Distance } \\ \hline \text { ind } \end{array}$	$\begin{array}{\|l\|} \hline \text { Botom } \\ \text { Reinf. } \\ \text { Steel } \\ \hline \end{array}$	$\begin{array}{\|c\|c} \hline \text { Stirup } \\ \text { Sitand } \\ \text { Distance } \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline \text { Botom } \\ \text { Reinf. } \\ \text { Reinel } \\ \hline \end{array}$	$\begin{gathered} \text { Stirup } \\ \text { End } \\ \text { Eistance } \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Botom } \\ \text { Reinf. } \\ \text { Steel } \\ \hline \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	$\begin{array}{\|c} \text { Botom } \\ \text { Reinf. } \\ \text { Siteel } \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { Stirup } \\ \text { Distance } \\ \hline \text { ind } \end{array}$	$\begin{aligned} & \hline \text { Botom } \\ & \text { Reinf. } \\ & \text { Steel } \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline \text { Stirup } \\ \text { End } \\ \text { Eistance } \\ \hline \end{array}$		$\begin{gathered} \text { Stirup } \\ \text { End } \\ \text { Eistance } \\ \hline \end{gathered}$
900	(3)	1-10M	0																
1200	(4)	1-10M	0	1-15M	0	1-15M	0	1-15M	$\begin{aligned} & 400 \\ & (16) \\ & \hline \end{aligned}$										
1500	(5)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	$\begin{aligned} & 400 \\ & (16) \\ & \hline \end{aligned}$	1-20M	$\begin{array}{r} 400 \\ (16) \\ \hline \end{array}$
1800	(6)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	0	1-20M	$\begin{aligned} & 400 \\ & (16) \\ & \hline \end{aligned}$	1-20M	$\begin{aligned} & 400 \\ & (16) \\ & \hline \end{aligned}$	1-20M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$
2400	(8)	1-15M	0	1-20M	0	1-20M	0	1-20M	0	1-20M	$\begin{aligned} & 400 \\ & (16) \\ & \hline \end{aligned}$	2-15M	$\begin{aligned} & 400 \\ & (16) \\ & \hline \end{aligned}$	2-15M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \begin{array}{c} 1-15 M+ \\ 1-20 \mathrm{M} \\ \hline \end{array} \\ \hline \end{array}$	$\begin{array}{r} 800 \\ (32) \\ \hline \end{array}$	2-20M	$\begin{aligned} & 800 \\ & (32) \end{aligned}$
3000	(10)	1-20M	0	1-20M	0	2-15M	$\begin{aligned} & 400 \\ & (16) \\ & \hline \end{aligned}$	2-15M	$\begin{aligned} & 400 \\ & (16) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|} \hline 1-2 \mathrm{M}+ \\ \hline \end{array}$	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$	2-20M	$\begin{array}{r} 800 \\ (32) \\ \hline \end{array}$	$\begin{gathered} \begin{array}{c} 1-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{array} \end{gathered}$	$\begin{aligned} & 800 \\ & (32) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \begin{array}{l} 1-15 \mathrm{M}++ \\ 2-20 \mathrm{c} \end{array} \\ \hline \end{array}$	$\begin{aligned} & 1000 \\ & (40) \\ & \hline \end{aligned}$	$\begin{gathered} \text { t-10M }+ \\ 3-20 \mathrm{M} \\ \hline \end{gathered}$	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$
3600	(12)	1-20M	0	2-15M	0	$\begin{gathered} \hline-1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	2-20M	$\begin{array}{r} 800 \\ (32) \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \\ \hline \end{array}$	$\begin{aligned} & 1000 \\ & (40) \end{aligned}$	3-20M	$\begin{aligned} & 1000 \\ & (40) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} 1-10 \mathrm{O}+ \\ 3-20 \mathrm{C} \end{array} \\ \hline \end{array}$	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$				
4200	(14)	2-15M	0	2-20M	$\begin{aligned} & 400 \\ & \text { (16) } \end{aligned}$	$\begin{array}{\|c} \hline \text { t-10M }+ \\ 2-20 \mathrm{M} \end{array}$	$\begin{array}{r} 800 \\ (32) \\ \hline \end{array}$	3-20M	$\begin{aligned} & 1000 \\ & (40) \end{aligned}$	$\begin{array}{\|c\|} \hline \text { 1-10M }+ \\ 3-20 \mathrm{M} \\ \hline \end{array}$	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$								
4800	(16)	2-20M	0	$\begin{aligned} & \begin{array}{l} \text { 1-10M+ } \\ 2-20 \mathrm{M} \end{array} \\ & \hline \end{aligned}$	$\begin{array}{r} 800 \\ (32) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { 7-10M }+ \\ 3-20 \mathrm{M} \end{array} \\ \hline \end{array}$	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$	4-20M	$\begin{aligned} & 1400 \\ & (56) \\ & \hline \end{aligned}$										
5400	(18)	$\begin{aligned} & \begin{array}{l} \text { P-10M+ } \\ \text { 2-20M } \\ \hline \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \\ & (16) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { T-10M + } \\ 3-20 \mathrm{M} \end{array}$	$\begin{aligned} & 1000 \\ & 100) \\ & \hline \end{aligned}$														
6000	(20)	3-20M	$\begin{array}{r} 800 \\ (32) \\ \hline \end{array}$																

## NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
2. Do not install more than $4-20 \mathrm{M}$ bottom bar or equivalent combination

Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
Bottom reinforcement located $89 \mathrm{~mm}\left(3.5^{\prime \prime}\right)$ from bottom of lintel.
This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing".
Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$.

Lintel Span		Lintel - 10"Thick x 24" Deep (250mm Thick x 600mm Deep), s = 12" (300mm)																	
		Uniformly Distributed Load																	
		7.5kN/m		$11 \mathrm{kN} / \mathrm{m}$		$14.5 \mathrm{kN} / \mathrm{m}$		$\frac{18 \mathrm{kN} / \mathrm{m}}{1250 \mathrm{lb} / \mathrm{ft}}$		$\frac{21.5 \mathrm{kN} / \mathrm{m}}{1500 \mathrm{lb} / \mathrm{ft}}$		$\frac{29 \mathrm{kN} / \mathrm{m}}{2000 \mathrm{lb} / \mathrm{ft}}$		$\frac{36.5 \mathrm{kN} / \mathrm{m}}{2500 \mathrm{lb} / \mathrm{ft}}$		$\frac{43.5 \mathrm{kN} / \mathrm{m}}{3000 \mathrm{lb} / \mathrm{ft}}$		$\frac{51 \mathrm{kN} / \mathrm{m}}{3500 \mathrm{lb} / \mathrm{ft}}$	
		$500 \mathrm{lb} / \mathrm{ft}$		$750 \mathrm{lb} / \mathrm{ft}$		$1000 \mathrm{lb} / \mathrm{ft}$													
mm	(t)	Bottom Reinf. Steel	Stirup End Distance	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \hline \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$
900	(3)	1-10M	0																
1200	(4)	1-10M	0	1-15M	0														
1500	(5)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$								
1800	(6)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	1-20M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$
2400	(8)	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	$\begin{aligned} & \hline 600 \\ & (24) \\ & \hline \end{aligned}$	2-15M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$	2-15M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	2-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$
3000	(10)	1-15M	0	1-20M	0	1-20M	0	2-15M	0	2-15M	$\begin{aligned} & \hline 600 \\ & (24) \\ & \hline \end{aligned}$	2-15M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 900 \\ & (36) \end{aligned}$	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	2-20M	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$
3600	(12)	1-20M	0	2-15M	0	2-15M	0	2-15M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$	2-15M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	2-20M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	$\begin{gathered} \text { T-10M+ } \\ \text { 2-20M } \end{gathered}$	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$	$\begin{gathered} \begin{array}{c} \text { 1-15M + } \\ \text { 2-200 } \end{array} \end{gathered}$	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$		
4200	(14)	2-15M	0	2-15M	0	2-15M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$	$\begin{aligned} & 1-15 \mathrm{M}+ \\ & 1-20 \mathrm{M} \end{aligned}$	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	2-20M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	$\begin{gathered} \text { 1-10M + } \\ \text { 2-20M } \end{gathered}$	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$	3-20M	$\begin{aligned} & 1500 \\ & (60) \\ & \hline \end{aligned}$				
4800	(16)	2-15M	0	$\begin{array}{\|c\|} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{array}$	0	2-20M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1-10 \mathrm{M}+ \\ \text { 2-20M } \end{array}$	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	$\begin{gathered} 1-15 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$	$\begin{gathered} 1-10 \mathrm{M}+ \\ 3-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1500 \\ & (60) \\ & \hline \end{aligned}$						
5400	(18)	$\begin{gathered} \text { 1-15M + } \\ \text { 1-200 } \end{gathered}$	0	2-20M	$\begin{aligned} & \hline 600 \\ & (24) \\ & \hline \end{aligned}$	$\begin{gathered} \begin{array}{c} \text {-10M + } \\ \text { 2-20 } \end{array} \end{gathered}$	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	$\begin{gathered} \text { 1-15M + } \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 1-10M + } \\ 3-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1500 \\ & (60) \\ & \hline \end{aligned}$								
6000	(20)	2-20M	0		$\begin{aligned} & 900 \\ & (36) \end{aligned}$	3-20M	$\begin{aligned} & 1200 \\ & (48) \end{aligned}$	$\begin{array}{\|c\|c\|} \hline \begin{array}{c} \text { 1-15M } \\ 3-20 \mathrm{M} \end{array} \\ \hline \end{array}$	$\begin{aligned} & 1500 \\ & (60) \end{aligned}$										

## NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
. Do not install more than $4-20 \mathrm{M}$ bottom bar or equivalent combination of smaller bars.
Bottom reinforcement located 89 mm (3.5") from bottom of lintel.
2. This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing"
3. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$.

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table L3 Continued

Lintel Span		Lintel - 10" Thick x 32" Deep (250mm Thick x 800mm Deep), s = 18" (450mm)																	
		Uniformly Distributed Load																	
		7.5kN/m		$11 \mathrm{kN} / \mathrm{m}$		$14.5 \mathrm{kN} / \mathrm{m}$		$18 \mathrm{kN} / \mathrm{m}$		$21.5 \mathrm{kN} / \mathrm{m}$		29kN/m		$36.5 \mathrm{kN} / \mathrm{m}$		$43.5 \mathrm{kN} / \mathrm{m}$		$51 \mathrm{kN} / \mathrm{m}$	
		$500 \mathrm{lb} / \mathrm{ft}$		$750 \mathrm{lb} / \mathrm{ft}$		$1000 \mathrm{lb} / \mathrm{ft}$		12501b/tt		$1500 \mathrm{lb} / \mathrm{ft}$		2000lb/ft		$2500 \mathrm{lb} / \mathrm{ft}$		$3000 \mathrm{lb} / \mathrm{ft}$		3500lb/ft	
mm	(t)	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \hline \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Stee	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \begin{array}{c} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{gathered} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{gathered}$
900	(3)	1-10M	0																
1200	(4)	1-10M	0																
1500	(5)	1-10M	0	1-15M	0	1-15M	0	1-15M	0										
1800	(6)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$								
2400	(8)	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	0	2-15M	$\begin{aligned} & 900 \\ & (36) \end{aligned}$	2-15M	$\begin{aligned} & 900 \\ & (36) \end{aligned}$	2-15M	$\begin{aligned} & 900 \\ & (36) \end{aligned}$
3000	(10)	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	0	2-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	2-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	2-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	$\underset{1-20 \mathrm{M}}{\substack{1-15 \mathrm{M} \\ \hline}}$	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$
3600	(12)	1-15M	0	1-20M	0	1-20M	0	2-15M	0	2-15M	$\begin{aligned} & \hline 900 \\ & (36) \\ & \hline \end{aligned}$	2-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	2-20M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	2-20M	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$	$\begin{gathered} 1-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$
4200	(14)	1-20M	0	2-15M	0	2-15M	0	2-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	2-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$	$\begin{gathered} \text { B-10M+ } \\ \text { 2-20M } \end{gathered}$	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 1-15M + } \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1800 \\ & (72) \\ & \hline \end{aligned}$		
4800	(16)	2-15M	0	2-15M	0	2-15M	$\begin{aligned} & 900 \\ & (36) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 1-15M + } \\ \text { 1-20M } \end{gathered}$	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	2-20M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	$\begin{gathered} \text { T-10M + } \\ \text { 2-20M } \end{gathered}$	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$						
5400	(18)	2-15M	0	2-15M	0	$\begin{array}{\|c\|} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{array}$	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	2-20M	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1-10 \mathrm{M}+ \\ & 2-20 \mathrm{M} \\ & \hline \end{aligned}$	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$	3-20M	$\begin{gathered} 1800 \\ (72) \\ \hline \end{gathered}$						
6000	(20)	2-15M	0	$\underset{\substack{1-15 \mathrm{M} \\ 1-20 \mathrm{M}}}{ }$	$\begin{aligned} & \hline 900 \\ & (36) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 1-10M+ } \\ & 2-20 \mathrm{M} \end{aligned}$	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	$\begin{gathered} \text { 1-15M + } \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$	3-20M	$\begin{gathered} 1800 \\ (72) \\ \hline \end{gathered}$	$\begin{gathered} \text { T-15M + } \\ 3-20 \mathrm{M} \end{gathered}$	$\begin{gathered} 2250 \\ (90) \\ \hline \end{gathered}$						

## NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
Bottom reinforcement located $89 \mathrm{~mm}\left(3.5^{\prime \prime}\right)$ from bottom of lintel.
This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing".
Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$.

## 6.0 －CANADIAN PRESCRIPTIVE ENGINEERING

Table L4 12＂Lintel Reinforcement with Uniformly Distributed Load

Lintel Span		Lintel－12＂Thick x 8＂Deep（300mm Thick x 200mm Deep），s＝3＂（75mm）																	
		Uniformly Distributed Load																	
		7．5kN／m		$11 \mathrm{kN} / \mathrm{m}$		$\frac{14.5 \mathrm{kN} / \mathrm{m}}{1000 \mathrm{lb} / \mathrm{ft}}$		$\frac{18 \mathrm{kN} / \mathrm{m}}{1250 \mathrm{lb} / \mathrm{ft}}$		$\frac{21.5 \mathrm{kN} / \mathrm{m}}{1500 \mathrm{lb} / \mathrm{ft}}$		$\frac{25.5 \mathrm{kN} / \mathrm{m}}{1750 \mathrm{lb} / \mathrm{ft}}$		$\frac{29 \mathrm{kN} / \mathrm{m}}{2000 \mathrm{lb} / \mathrm{ft}}$		$\frac{33 \mathrm{kN} / \mathrm{m}}{2250 \mathrm{lb} / \mathrm{ft}}$		$\frac{36.5 \mathrm{kN} / \mathrm{m}}{2500 \mathrm{lb} / \mathrm{ft}}$	
		500	$\mathrm{lb} / \mathrm{ft}$	750	$\mathrm{lb} / \mathrm{ft}$														
mm	（t）	Bottom Reinf． Steel	$\begin{array}{\|l\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf． Steel	$\begin{array}{\|l\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf． Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf． Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf． Steel	$\begin{aligned} & \text { Stirrup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf． Steel	$\begin{aligned} & \text { Stirrup } \\ & \text { End } \\ & \text { Distance } \\ & \hline \end{aligned}$	Bottom Reinf． Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf． Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf． Steel	$\begin{aligned} & \text { Stirrup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$
900	（3）	1－10M	0	1－10M	0	1－10M	0	1－15M	0										
1200	（4）	1－15M	0	1－20M	0	1－20M	$\begin{aligned} & 150 \\ & (6) \\ & \hline \end{aligned}$	2－15M	$\begin{aligned} & 150 \\ & (6) \\ & \hline \end{aligned}$	2－15M	$\begin{gathered} 225 \\ (9) \\ \hline \end{gathered}$								
1500	（5）	1－15M	0	1－15M	0	1－20M	0	1－20M	0	2－15M	$\begin{aligned} & 150 \\ & (6) \\ & \hline \end{aligned}$	2－15M	$\begin{gathered} 225 \\ (9) \\ \hline \end{gathered}$	$\underset{\substack{1-15 \mathrm{M} \\ 1-20 \mathrm{M}}}{ }$	$\begin{aligned} & 225 \\ & (9) \\ & \hline \end{aligned}$	2－20M	$\begin{array}{r} 300 \\ (12) \\ \hline \end{array}$		
1800	（6）	1－15M	0	1－20M	0	2－15M	0	2－15M	$\begin{aligned} & \hline 150 \\ & (6) \\ & \hline \end{aligned}$	2－20M	$\begin{gathered} 225 \\ (9) \\ \hline \end{gathered}$								
2400	（8）	2－15M	0	2－20M	0														
3000	（10）																		
3600	（12）																		
4200	（14）																		
4800	（16）																		
5400	（18）																		
6000	（20）																		

NOTES
1．Stirrup spacing（s）and end distance are given in＂mm＂and＂inch＂
Do not install more than 2－20M bottom bar or equivalent combination of smaller bars．
Bottom reinforcement located $89 \mathrm{~mm}\left(3.5^{\prime \prime}\right)$ from bottom of lintel．
4．This table to be used in conjunction with the＂Lintel Design Limitations＂\＆＂Lintel Drawing＂．
5．Cells with zero end distance do not require stirrups，except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$ ．

Lintel Span		Lintel－12＂＇Thick x 12＂Deep（300mm Thick x 300mm Deep），s＝6＂（150mm）																	
		Uniformly Distributed Load																	
		7．5kN／m		$11 \mathrm{kN} / \mathrm{m}$		$14.5 \mathrm{kN} / \mathrm{m}$		$18 \mathrm{kN} / \mathrm{m}$		$21.5 \mathrm{kN} / \mathrm{m}$		$25.5 \mathrm{kN} / \mathrm{m}$		29kN／m		33kN／m		$36.5 \mathrm{kN} / \mathrm{m}$	
		$500 \mathrm{lb} / \mathrm{ft}$		$750 \mathrm{lb} / \mathrm{ft}$		$1000 \mathrm{lb} / \mathrm{ft}$		1250lb／ft		1500lb／ft		1750lb／ft		2000lb／ft		2250lb／ft		$2500 \mathrm{lb} / \mathrm{ft}$	
mm	（t）	Bottom Reinf． Steel	$\begin{array}{\|c\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf． Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf． Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf． Steel		Bottom Reinf． Steel	$\begin{array}{\|l\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf． Steel	$\begin{array}{\|l\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf． Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf． Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf． Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$
900	（3）	1－10M	0	1－15M	0	1－15M	0												
1200	（4）	1－10M	0	1－10M	0	1－10M	0	1－15M	0	1－20M	0								
1500	（5）	1－10M	0	1－15M	0	1－15M	0	1－15M	0	1－15M	0	1－20M	0	1－20M	0	1－20M	$\begin{array}{r} \hline 300 \\ (12) \\ \hline \end{array}$	1－20M	$\begin{array}{r} 300 \\ (12) \\ \hline \end{array}$
1800	（6）	1－15M	0	1－15M	0	1－20M	0	1－20M	0	1－20M	0	1－20M	$\begin{array}{r} 300 \\ (12) \\ \hline \end{array}$	2－15M	$\begin{aligned} & \hline 300 \\ & (12) \\ & \hline \end{aligned}$	2－15M	$\begin{array}{r} 300 \\ (12) \\ \hline \end{array}$	2－15M	$\begin{array}{r} 450 \\ (18) \\ \hline \end{array}$
2400	（8）	1－20M	0	1－20M	0	1－20M	0	2－15M	$\begin{array}{r} 300 \\ (12) \\ \hline \end{array}$	$\begin{gathered} \hline \begin{array}{c} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \\ \hline \end{array} ⿳ ⺈ ⿴ 囗 十 一 ~ \\ \hline \end{gathered}$	$\begin{array}{r} 300 \\ (12) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \\ \hline \end{array}$	$\begin{array}{r} 450 \\ (18) \\ \hline \end{array}$	2－20M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 1-10M }+ \\ & 2-20 \mathrm{M} \\ & \hline \end{aligned}$	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1-15 \mathrm{M}+ \\ 2-20 \mathrm{M} \\ \hline \end{array}$	$\begin{array}{r} 750 \\ (30) \\ \hline \end{array}$
3000	（10）	1－20M	0	2－15M	0	$\underset{\substack{\text { B-15M + } \\ 1-20 \mathrm{M}}}{+}$	$\begin{aligned} & 300 \\ & (12) \end{aligned}$	2－20M	$\begin{aligned} & 450 \\ & (18) \end{aligned}$	$\underset{2-20 \mathrm{M}}{\substack{\text {-15M + }}}$	$\begin{aligned} & 600 \\ & (24) \end{aligned}$	$3-20 \mathrm{M}$	$\begin{aligned} & 750 \\ & \text { (30) } \end{aligned}$	$\begin{gathered} \begin{array}{c} \text { 1-10M } \\ 3-20 \mathrm{M} \end{array}+ \end{gathered}$	$\begin{aligned} & 900 \\ & (36) \end{aligned}$				
3600	（12）	2－15M	0	2－20M	$\begin{array}{r} 300 \\ (12) \\ \hline \end{array}$	$\begin{gathered} \text { 1-15M + } \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	$\begin{gathered} \text { 1-10M + } \\ 3-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & \hline 750 \\ & (30) \\ & \hline \end{aligned}$										
4200	（14）	2－20M	0	3－20M	$\begin{aligned} & 450 \\ & (18) \\ & \hline \end{aligned}$	4－20M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$												
4800	（16）																		
5400	（18）																		
6000	（20）																		

## NOTES

1．Stirrup spacing（s）and end distance are given in＂mm＂and＂inch＂
2．Do not install more than $4-20 \mathrm{M}$ bottom bar or equivalent combination of smaller bars．
3．Bottom reinforcement located 89 mm （3．5＂）from bottom of lintel．
4．This table to be used in conjunction with the＂Lintel Design Limitations＂\＆＂Lintel Drawing＂．
5．Cells with zero end distance do not require stirrups，except provide a minimum of three stirrups at each end of the lintel where Sa（0．2）$>0.4$ ．

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table L4 Continued

Lintel Span		Lintel - 12"'Thick x 16" Deep (300mm Thick x 400mm Deep), s = 8" (200mm)																	
		Uniformly Distributed Load																	
		7.5kN/m		$11 \mathrm{kN} / \mathrm{m}$		$14.5 \mathrm{kN} / \mathrm{m}$		$\frac{18 \mathrm{kN} / \mathrm{m}}{1250 \mathrm{lb} / \mathrm{ft}}$		$\frac{21.5 \mathrm{kN} / \mathrm{m}}{1500 \mathrm{lb} / \mathrm{ft}}$		$\frac{25.5 \mathrm{kN} / \mathrm{m}}{1750 \mathrm{lb} / \mathrm{ft}}$		$\frac{29 \mathrm{kN} / \mathrm{m}}{2000 \mathrm{lb} / \mathrm{ft}}$		$\frac{36.5 \mathrm{kN} / \mathrm{m}}{2500 \mathrm{lb} / \mathrm{ft}}$		$\frac{43.5 \mathrm{kN} / \mathrm{m}}{3000 \mathrm{lb} / \mathrm{ft}}$	
		500	$\mathrm{lb} / \mathrm{ft}$	750	lb/ft	1000	lb/ft												
mm	(t)	Bottom Reinf. Steel	$\begin{array}{\|l} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \\ & \hline \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \\ & \hline \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \hline \text { Stirup } \\ & \text { End } \\ & \text { Distance } \\ & \hline \end{aligned}$
900	(3)	1-10M	0																
1200	(4)	1-10M	0	1-15M	0	1-15M	0	1-15M	0										
1500	(5)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	$\begin{aligned} & 400 \\ & (16) \\ & \hline \end{aligned}$
1800	(6)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	0	1-20M	0	1-20M	$\begin{aligned} & \hline 400 \\ & (16) \\ & \hline \end{aligned}$	1-20M	$\begin{aligned} & 400 \\ & (16) \\ & \hline \end{aligned}$
2400	(8)	1-15M	0	1-20M	0	1-20M	0	1-20M	0	1-20M	0	2-15M	$\begin{aligned} & \hline 400 \\ & (16) \\ & \hline \end{aligned}$	2-15M	$\begin{array}{r} 400 \\ (16) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{array} \\ \hline \end{array}$	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	2-20M	$\begin{array}{r} 800 \\ (32) \\ \hline \end{array}$
3000	(10)	1-20M	0	1-20M	0	2-15M	0	2-15M	$\begin{aligned} & 400 \\ & (16) \\ & \hline \end{aligned}$	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	$\begin{array}{r} 400 \\ (16) \\ \hline \end{array}$	2-20M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$	2-20M	$\begin{array}{r} 800 \\ (32) \\ \hline \end{array}$	$\begin{aligned} & 1-15 \mathrm{M}+ \\ & 2-20 \mathrm{M} \end{aligned}$	$\begin{aligned} & 1000 \\ & (40) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 1-10 \mathrm{M}+ \\ 3-20 \mathrm{M} \\ \hline \end{array}$	$\begin{aligned} & 1000 \\ & (40) \end{aligned}$
3600	(12)	1-20M	0	2-15M	0	$\underset{\substack{1-15 \mathrm{M} \\ 1-20 \mathrm{M}}}{ }$	$\begin{aligned} & 400 \\ & (16) \\ & \hline \end{aligned}$	2-20M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	$\begin{gathered} \begin{array}{c} \text { 1-10M+ } \\ 2-20 \mathrm{M} \end{array} \\ \hline \end{gathered}$	$\begin{array}{r} 800 \\ (32) \\ \hline \end{array}$	$\begin{gathered} 1-15 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1000 \\ & (40) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 1-10M + } \\ 3-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1000 \\ & (40) \\ & \hline \end{aligned}$	4-20M	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$		
4200	(14)	2-15M	0	2-20M	0	$\begin{gathered} \begin{array}{c} \text { 1-10M + } \\ 2-20 \mathrm{M} \end{array} \\ \hline \end{gathered}$	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	$\begin{gathered} \text { 1-15M + } \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{array}{r} 800 \\ (32) \\ \hline \end{array}$	$\begin{gathered} \text { 1-10M + } \\ 3-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1000 \\ & (40) \\ & \hline \end{aligned}$	4-20M	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$						
4800	(16)	2-20M	0	$\begin{gathered} 1-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & \hline 400 \\ & (16) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1-10 \mathrm{M}+ \\ 3-20 \mathrm{M} \end{gathered}$	$\begin{array}{r} 800 \\ (32) \\ \hline \end{array}$	4-20M	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$										
5400	(18)	$\begin{gathered} \begin{array}{c} \text { 1-10M + } \\ \text { 2-200 } \end{array} \end{gathered}$	0	$\begin{gathered} 1-10 \mathrm{M}+ \\ 3-20 \mathrm{M} \\ \hline \end{gathered}$	$\begin{array}{r} 800 \\ (32) \\ \hline \end{array}$														
6000	(20)	3-20M	$\begin{aligned} & \hline 400 \\ & (16) \\ & \hline \end{aligned}$																

## NOTES


#### Abstract

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

Do not install more than 4-20M bottom bar or equivalent combination of smaller bars. Bottom reinforcement located 89 mm ( $3.5^{\prime \prime}$ ) from bottom of lintel. This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing" Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$.


Lintel Span		Lintel - 12"Thick x 24" Deep (300mm Thick x 600mm Deep), s = 12" (300mm)																	
		Uniformly Distributed Load																	
		7.5kN/m		$11 \mathrm{kN} / \mathrm{m}$		$14.5 \mathrm{kN} / \mathrm{m}$		$18 \mathrm{kN} / \mathrm{m}$		$\frac{21.5 \mathrm{kN} / \mathrm{m}}{1500 \mathrm{lb} / \mathrm{ft}}$		$\frac{29 \mathrm{kN} / \mathrm{m}}{2000 \mathrm{lb} / \mathrm{ft}}$		$\frac{36.5 \mathrm{kN} / \mathrm{m}}{2500 \mathrm{lb} / \mathrm{ft}}$		$\frac{43.5 \mathrm{kN} / \mathrm{m}}{3000 \mathrm{lb} / \mathrm{ft}}$		$\frac{51 \mathrm{kN} / \mathrm{m}}{3500 \mathrm{lb} / \mathrm{ft}}$	
		500	$\mathrm{lb} / \mathrm{ft}$	750	$\mathrm{lb} / \mathrm{tt}$	1000	lb/t	1250	lb/t										
mm	(t)	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{gathered} \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{gathered}$	Bottom Reinf. Steel	$\begin{array}{\|c} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{gathered} \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{gathered}$	Bottom Reinf. Steel	$\begin{array}{\|c} \hline \begin{array}{c} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$
900	(3)	1-10M	0																
1200	(4)	1-10M	0	1-10M	$0$	1-10M	0	1-15M	0										
1500	(5)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	0								
1800	(6)	1-10M	0	1-10M	0	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$
2400	(8)	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	0	2-15M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$	2-15M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$	2-15M	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$
3000	(10)	1-15M	0	1-20M	0	1-20M	0	2-15M	0	2-15M	0	2-15M	$\begin{aligned} & \hline 600 \\ & (24) \\ & \hline \end{aligned}$	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \\ \hline \end{gathered}$	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \\ \hline \end{array}$	$\begin{aligned} & 900 \\ & (36) \\ & \hline \end{aligned}$	2-20M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$
3600	(12)	1-20M	0	2-15M	0	2-15M	0	2-15M	0	2-15M	$\begin{aligned} & \hline 600 \\ & (24) \\ & \hline \end{aligned}$	2-20M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	$\begin{gathered} 1-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	$\begin{gathered} 1-15 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$	3-20M	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$
4200	(14)	2-15M	0	2-15M	0	2-15M	0	$\begin{gathered} \begin{array}{c} 1-15 \mathrm{M}++ \\ 1-20 \mathrm{M} \end{array} \end{gathered}$	$\begin{aligned} & \hline 600 \\ & (24) \\ & \hline \end{aligned}$	2-20M	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$	$\begin{gathered} 1-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$	3-20M	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$	$\begin{gathered} 1-15 \mathrm{M}+ \\ 3-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1500 \\ & (60) \\ & \hline \end{aligned}$		
4800	(16)	2-15M	0	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \\ \hline \end{gathered}$	0	2-20M	$\begin{aligned} & \hline 600 \\ & (24) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 1-10M }+ \\ & 2-20 \mathrm{M} \end{aligned}$	$\begin{aligned} & 600 \\ & (24) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 900 \\ & (36) \\ & \hline \end{aligned}$	$\begin{gathered} 1-10 \mathrm{M}+ \\ 3-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1500 \\ & (60) \\ & \hline \end{aligned}$						
5400	(18)	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	0	2-20M	0	$\begin{gathered} 1-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{array}{r} 600 \\ (24) \\ \hline \end{array}$	3-20M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	$\begin{gathered} 1-10 \mathrm{M}+ \\ 3-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1200 \\ & (48) \\ & \hline \end{aligned}$								
6000	(20)	2-20M	0	$\begin{gathered} \text { 1-10M + } \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 600 \\ & (24) \end{aligned}$	$3-20 \mathrm{M}$	$\begin{array}{r} 900 \\ (36) \end{array}$	$\begin{gathered} \text { 1-15M + } \\ 3-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1200 \\ & (48) \end{aligned}$										

## NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
Bottom reinforcement located 89 mm ( $3.5^{\prime \prime}$ ) from bottom of lintel.
Bottom reinforcement located 89 mm ( 3.5 ") from bottom of lintel.
This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing"
5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$.

Build Anything Better.

Table L4 Continued

Lintel Span		Lintel - 12" Thick x 32" Deep (300mm Thick x 800mm Deep), s=18" (450mm)																	
		Uniformly Distributed Load																	
		7.5kN/m		$11 \mathrm{kN} / \mathrm{m}$		$14.5 \mathrm{kN} / \mathrm{m}$		$18 \mathrm{kN} / \mathrm{m}$		$21.5 \mathrm{kN} / \mathrm{m}$		29kN/m		$36.5 \mathrm{kN} / \mathrm{m}$		$43.5 \mathrm{kN} / \mathrm{m}$		$51 \mathrm{kN} / \mathrm{m}$	
		5001b/ft		$750 \mathrm{lb} / \mathrm{ft}$		$1000 \mathrm{lb} / \mathrm{ft}$		1250lb/ft		$1500 \mathrm{lb} / \mathrm{ft}$		2000lb/ft		$2500 \mathrm{lb} / \mathrm{ft}$		$3000 \mathrm{lb} / \mathrm{ft}$		3500lb/ft	
mm	(t)	Bottom Reinf. Steel	$\begin{array}{\|l\|l} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Stee	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Stee	$\begin{array}{\|l} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|l} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$
900	(3)	1-10M	0																
1200	(4)	1-10M	0																
1500	(5)	1-10M	0	1-15M	0	1-15M	0												
1800	(6)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	0								
2400	(8)	1-10M	0	1-15M	0	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	0	2-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	2-15M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$
300	(10)	1-15M	0	1-15M	0	1-15M	0	1-20M	0	1-20M	0	2-15M	0	2-15M	$\begin{aligned} & \hline 900 \\ & (36) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$
3600	(12)	1-15M	0	1-20M	0	1-20M	0	2-15M	0	2-15M	0	$\underset{\substack{1-15 \mathrm{M} \\ 1-20 \mathrm{M}}}{+}$	$\begin{aligned} & \hline 900 \\ & (36) \\ & \hline \end{aligned}$	$\underset{1-20 \mathrm{M}}{\substack{1-15 \mathrm{M}}}$	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	2-20M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	$\begin{gathered} \text { T-10M + } \\ { }^{2}-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$
4200	(14)	1-20M	0	2-15M	0	2-15M	0	$\begin{gathered} \text { 1-15M++} \\ 1-20 \mathrm{M} \end{gathered}$	0	$\begin{gathered} \hline \begin{array}{c} 1-15 \mathrm{M}++ \\ 1-20 \mathrm{M} \end{array} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 900 \\ & (36) \\ & \hline \end{aligned}$	2-20M	$\begin{aligned} & 900 \\ & (36) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 1-10M }+ \\ & 2-20 \mathrm{M} \\ & \hline \end{aligned}$	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1-10 \mathrm{M}+ \\ & 2-20 \mathrm{M} \\ & \hline \end{aligned}$	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$		
4800	(16)	2-15M	0	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	0	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \\ \hline \end{gathered}$	0	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \\ \hline \end{gathered}$	$\begin{aligned} & 900 \\ & (36) \end{aligned}$	2-20M	$\begin{aligned} & 900 \\ & (36) \end{aligned}$	$\begin{aligned} & \hline \text { 1-10M }+ \\ & 2-20 \mathrm{M} \end{aligned}$	$\begin{aligned} & 1350 \\ & (54) \end{aligned}$	3-20M	$\begin{aligned} & 1350 \\ & (54) \end{aligned}$				
5400	(18)	$\begin{gathered} \begin{array}{c} 1-15 \mathrm{M}++ \\ 1-20 \mathrm{M} \end{array} \end{gathered}$	0	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	0	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	0	2-20M	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	$\begin{gathered} 1-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{array}{r} 900 \\ (36) \\ \hline \end{array}$	3-20M	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$	$\begin{gathered} 1-15 \mathrm{M}+ \\ 3-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1800 \\ & (72) \\ & \hline \end{aligned}$				
6000	(20)	$\begin{gathered} \hline 1-15 \mathrm{M}++ \\ 1-20 \mathrm{M} \end{gathered}$	0	2-20M	0	$\begin{gathered} 1-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & \hline 900 \\ & (36) \end{aligned}$	$\begin{gathered} 1-15 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 900 \\ & (36) \end{aligned}$	3-20M	$\begin{aligned} & 1350 \\ & (54) \\ & \hline \end{aligned}$	$\begin{gathered} 1-15 \mathrm{M}+ \\ 3-20 \mathrm{M} \end{gathered}$	$\begin{aligned} & 1800 \\ & (72) \end{aligned}$						

## NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
Bottom reinforcement located $89 \mathrm{~mm}\left(3.5^{\prime \prime}\right)$ from bottom of lintel.
This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing".
Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$.

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table L5 6" Lintel Reinforcement Concentrated Load

Lintel Span		Lintel - 6"Thick x 8" Deep (150mm Thick x 200mm Deep), s = 3" (75mm)																	
		Unfactored Point Load																	
		4kN		6 kN		8kN		10 kN		12 kN		14 kN		16kN		18kN		20kN	
		800lb		1300 lb		1700lb		2200lb		2600lb		3100 lb		3500 lb		4000 lb		4400lb	
mm	(t)	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirrup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$
900	(3)	1-10M	NO	1-10M	NO	1-10M	YES	1-15M	YES	1-15M	YES	1-15M	YES	1-15M	YES	1-20M	YES	1-20M	YES
1200	(4)	1-10M	NO	1-10M	NO	1-15M	YES	1-15M	YES	1-20M	YES	1-20M	YES						
1500	(5)	1-15M	NO	1-15M	NO	1-20M	YES												
1800	(6)	1-15M	NO																
2400	(8)																		
3000	(10)																		
3600	(12)																		
4200	(14)																		
4800	(16)																		
5400	(18)																		
6000	(20)																		

## NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
2. Do not install more than $1-20 \mathrm{M}$ bottom bar or equivalent combination of smaller bars.
3. Bottom reinforcement located $89 \mathrm{~mm}(3.5$ ") from bottom of lintel.
4. This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing"
5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$.

Lintel Span		Lintel - 6"Thick x 12" Deep (150mm Thick x 300mm Deep), s = 6" (150mm)																	
		Unfactored Point Load																	
		4kN		6.5 kN		9kN		11.5 kN		14 kN		16.5 kN		19 kN		21.5 kN		24 kN	
		8001b		1400 lb		2000lb		2500lb		3100 lb		3700 lb		4200lb		4800 lb		5300 lb	
mm	(t)	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	Stirup End Distance	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirrup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \\ & \hline \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|c} \hline \begin{array}{c} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-10M	YES	1-10M	YES	1-15M	YES	1-15M	YES	1-15M	YES
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	YES										
1500	(5)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES	1-20M	YES	1-20M	YES	2-15M	YES
1800	(6)	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-20M	YES	1-20M	YES	2-15M	YES				
2400	(8)	1-15M	NO	1-15M	NO	2-15M	YES	2-15M	YES	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	YES								
3000	(10)	1-20M	NO	2-15M	NO														
3600	(12)	$\begin{array}{\|c} \text { 1-15M + } \\ 1-20 \mathrm{M} \end{array}$	NO																
4200	(14)																		
4800	(16)																		
5400	(18)																		
6000	(20)																		

## notes

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
2. Do not install more than $2-20 \mathrm{M}$ bottom bar or equivalent combination of smaller bars.

Bottom reinforcement located 89 mm (3.5") from bottom of lintel.
4. This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing"
5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table L5 Continued

Lintel Span		Lintel - 6"Thick x 16" Deep (150mm Thick x 400mm Deep), s = 8" (200mm)																	
		Unfactored Point Load																	
		4kN		7kN		10kN		13kN		16kN		19kN		21 kN		24kN		27kN	
		8001b		1500 lb		2200 lb		2900lb		3500 lb		4200 lb		4700 lb		5300 lb		6000lb	
mm	(t)	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirrup } \\ & \text { End } \\ & \text { Distance } \\ & \hline \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \\ & \hline \end{aligned}$
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-10M	YES	1-10M	YES	1-10M	YES	1-15M	YES	1-15M	YES
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-15M	YES								
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	YES	1-20M	YES								
1800	(6)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES	1-20M	YES	2-15M	YES		
2400	(8)	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	YES	1-20M	YES	2-15M	YES	2-20M	YES				
3000	(10)	1-15M	NO	1-20M	NO	2-15M	YES	2-15M	YES	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	YES								
3600	(12)	1-20M	NO	2-15M	NO	$\begin{gathered} \hline 1-15 \mathrm{M}++ \\ 1-20 \mathrm{M} \end{gathered}$	YES	$\begin{gathered} \text { T-10M } \\ \text { 2-20M } \end{gathered}$	YES	$\begin{aligned} & \text { 1-15M + } \\ & 2-20 \mathrm{M} \end{aligned}$	YES								
4200	(14)	2-15M	NO	2-20M	NO	$\begin{gathered} \text { 1-15M + } \\ 2-20 \mathrm{M} \end{gathered}$	YES												
4800	(16)	2-20M	NO	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	NO														
5400	(18)	$\begin{gathered} 1-15 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	NO																
6000	(20)																		

## NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

Do not install more than 3-20M bottom bar or equivalent combination of smaller bars.
Bottom reinforcement located 89 mm ( $3.5^{\prime \prime}$ ) from bottom of lintel.
4. This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing"
5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$.

Lintel Span		Lintel - 6"Thick x 24" Deep (150mm Thick x 600mm Deep), s = 12" (300mm)																	
		Unfactored Point Load																	
		4kN		8kN		12 kN		16 kN		20kN		24kN		28kN		32 kN		36 kN	
		8001b		1700lb		2600lb		3500lb		4400 lb		5300 lb		6200lb		7100lb		8000lb	
mm	(t)	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirrup } \\ & \text { End } \\ & \text { Distance } \\ & \hline \end{aligned}$	Bottom Reinf. Steel	Stirup End Distance	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Bottom } \\ \text { Reinf. } \\ \text { Steel } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-10M	YES	1-10M	YES	1-10M	YES	1-15M	YES
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-10M	YES	1-15M	YES	1-15M	YES	1-15M	YES
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-15M	YES								
1800	(6)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	YES	1-20M	YES								
2400	(8)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES	1-20M	YES	2-15M	YES	2-15M	YES
3000	(10)	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	YES	1-20M	YES	2-15M	YES	$\underset{1-20 \mathrm{M}}{\mathrm{t}-15 \mathrm{M}}+$	YES	2-20M	YES		
3600	(12)	1-15M	NO	1-15M	NO	1-20M	NO	2-15M	YES	2-15M	YES	2-20M	YES	$\begin{gathered} \text { 1-10M + } \\ 2-20 \mathrm{M} \end{gathered}$	YES				
4200	(14)	1-20M	NO	1-20M	NO	2-15M	YES	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	YES	2-20M	YES	$\begin{gathered} \text { 1-15M + } \\ 2-20 \mathrm{M} \end{gathered}$	YES						
4800	(16)	1-20M	NO	2-15M	NO		YES	$\underset{-20 \mathrm{M}}{\substack{1-10 \mathrm{M} \\ \hline}}$	YES	$\begin{gathered} \text { P-15M + } \\ 2-20 \mathrm{M} \end{gathered}$	YES	$\begin{gathered} \text { 1-15M }+ \\ 3-20 \mathrm{M} \end{gathered}$	YES						
5400	(18)	2-15M	NO	2-20M	NO	1-10M + 2-20M	YES	3-20M	YES	$\begin{gathered} \text { 1-15M + } \\ 3-20 \mathrm{M} \end{gathered}$	YES								
6000	(20)	$\begin{gathered} \text { 1-15M + } \\ 1-20 \mathrm{M} \end{gathered}$	NO	$\begin{gathered} \begin{array}{c} 1-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{array} \end{gathered}$	NO	3-20M	YES	$\begin{array}{\|c\|} \hline \text { 1-15M + } \\ 3-20 \mathrm{M} \end{array}$	YES										

## NOTES

. Stirrup spacing (s) and end distance are given in "mm" and "inch"
2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
3. Bottom reinforcement located $89 \mathrm{~mm}\left(3.5^{\prime \prime}\right)$ from bottom of lintel.
4. This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing".
5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$.

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table L5 Continued

Lintel Span		Lintel - 6"'Thick x 32" Deep (150mm Thick x 800mm Deep), s = 18" (450mm)																			
		Unfactored Point Load																			
		4kN/m		9kN/m		14kN/m		$\frac{19 \mathrm{kN} / \mathrm{m}}{4200 \mathrm{lb} / \mathrm{ft}}$		$\frac{24 \mathrm{kN} / \mathrm{m}}{5300 \mathrm{lb} / \mathrm{ft}}$		$\frac{29 \mathrm{kN} / \mathrm{m}}{6500 \mathrm{lb} / \mathrm{ft}}$		$\frac{34 \mathrm{kN} / \mathrm{m}}{7600 \mathrm{lb} / \mathrm{ft}}$		$\begin{aligned} & \hline 39 \mathrm{kN} / \mathrm{m} \\ & \hline 8700 \mathrm{lb} / \mathrm{ft} \end{aligned}$		$44 \mathrm{kN} / \mathrm{m}$			
		800	$\mathrm{lb} / \mathrm{ft}$	200	$\mathrm{lb} / \mathrm{ft}$	3100	lb/ft			$980$	$\mathrm{lb} / \mathrm{ft}$										
mm	(t)	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l} \hline \begin{array}{c} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$			Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES										
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-10M	YES	1-10M	YES	1-15M	YES	1-15M	YES		
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-15M	YES	1-15M	YES	1-15M	YES	1-15M	YES		
1800	(6)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	YES	1-15M	YES	1-15M	YES	1-15M	YES	1-15M	YES	1-20M	YES		
2400	(8)	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-20M	YES	1-20M	YES	1-20M	YES	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	YES		
3000	(10)	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	YES	1-20M	YES	1-20M	YES	2-15M	YES						
3600	(12)	1-15M	NO	1-20M	NO	1-20M	NO	1-20M	YES	2-15M	YES	$\begin{gathered} \text { 1-15M } \\ 1-20 \mathrm{M} \end{gathered}$	YES								
4200	(14)	1-20M	NO	1-20M	NO	1-20M	NO	2-15M	YES	$\begin{gathered} 1-15 \mathrm{M}++ \\ 1-20 \mathrm{M} \end{gathered}$	YES										
4800	(16)	1-20M	NO	1-20M	NO	2-15M	YES	$\begin{gathered} \text { 1-15M + } \\ 1-20 \mathrm{M} \end{gathered}$	YES	$\begin{gathered} 1-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	YES										
5400	(18)	1-20M	NO	2-15M	NO	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	YES	2-20M	YES												
6000	(20)	2-15M	NO	$\begin{array}{\|c\|c\|} \hline-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{array}$	NO	2-20M	YES	$\begin{gathered} \text { 1-10M + } \\ 2-20 \mathrm{M} \end{gathered}$	YES												

## NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
Bottom reinforcement located 89 mm (3.5") from bottom of lintel.
This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing".
5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table L6 8" Lintel Reinforcement Concentrated Load

Lintel Span		Lintel - 8"Thick x 8" Deep (200mm Thick x 200mm Deep), s = 3" (75mm)																	
		Unfactored Point Load																	
		4kN		6 kN		8kN		10kN		12kN		14 kN		16kN		18 kN		20kN	
		8001b		1300 lb		1700lb		2200 lb		2600lb		3100 lb		3500 lb		4000 lb		4400 lb	
mm	(t)	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirrup } \\ & \text { End } \\ & \text { Distance } \\ & \hline \end{aligned}$	Bottom Reinf. Steel	$\begin{gathered} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{gathered}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirrup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirrup } \\ & \text { End } \\ & \text { Distance } \\ & \hline \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirrup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirrup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	YES	1-15M	YES	1-15M	YES	1-15M	YES	1-20M	YES	1-20M	YES
1200	(4)	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-20M	YES	1-20M	YES						
1500	(5)	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	YES										
1800	(6)	1-15M	NO	1-20M	NO														
2400	(8)																		
3000	(10)																		
3600	(12)																		
4200	(14)																		
4800	(16)																		
5400	(18)																		
6000	(20)																		

NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

Do not install more than 2-15M bottom bar or equivalent combination of smaller bars.
Bottom reinforcement located 89 mm (3.5") from bottom of lintel.
4. This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing".
5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$.

Lintel Span		Lintel - 8"Thick x 12" Deep (200mm Thick x 300mm Deep), s = 6" (150mm)																	
		Unfactored Point Load																	
		4kN		6.5 kN		9kN		11.5 kN		14 kN		16.5 kN		19kN		21.5 kN		24 kN	
		8001b		1400 lb		2000lb		2500lb		3100 lb		3700 lb		4200 lb		4800 lb		5300 lb	
mm	(t)	Bottom Reinf. Steel	Stirrup   End   Distance	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \hline \text { Stirup } \\ & \text { End } \\ & \text { Distance } \\ & \hline \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirrup } \\ & \text { End } \\ & \text { Distance } \\ & \hline \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES	1-15M	YES
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	YES								
1500	(5)	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-20M	YES	1-20M	YES	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	YES
1800	(6)	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	YES	1-20M	YES	2-15M	YES	2-15M	YES	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	YES
2400	(8)	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	$\underset{1-20 \mathrm{M}}{\substack{1-15 \mathrm{M}}}$	YES	2-20M	YES	$\begin{gathered} \begin{array}{c} \text { 1-10M } \\ 2-20 \mathrm{C} \end{array} \end{gathered}$	YES				
3000	(10)	1-20M	NO	2-15M	NO	2-20M	NO	$\begin{aligned} & \text { 1-10M + } \\ & 2-20 \mathrm{M} \end{aligned}$	NO										
3600	(12)	$\begin{gathered} \text { 1-15M + } \\ 1-20 \mathrm{M} \end{gathered}$	NO	$\begin{gathered} \text { 1-10M + } \\ \text { 2-20M } \end{gathered}$	NO														
4200	(14)	$\begin{aligned} & \text { 1-10M++} \\ & 2-20 \mathrm{M} \end{aligned}$	NO																
4800	(16)																		
5400	(18)																		
6000	(20)																		

## NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
2. Do not install more than $1-15 \mathrm{M}+2-20 \mathrm{M}$ bottom bar or equivalent combination of smaller bars.
3. Bottom reinforcement located $89 \mathrm{~mm}\left(3.5^{\prime \prime}\right)$ from bottom of lintel.
4. This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing"
5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4.

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table L6 Continued

Lintel Span		Lintel - 8"Thick x 16" Deep (200mm Thick x 400mm Deep), s = 8" (200mm)																	
		Unfactored Point Load																	
		4kN		7kN		10kN		13kN		16kN		19kN		21 kN		24kN		27 kN	
		8001b		1500lb		2200lb		2900lb		3500lb		4200 lb		4700lb		5300 lb		6000lb	
mm	(t)	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$
900	(3)	1-10M	NO	1-10M	YES	1-10M	YES	1-15M	YES	1-15M	YES								
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES	1-15M	YES
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES	1-20M	YES
1800	(6)	1-10M	NO	1-15M	YES	1-20M	YES	2-15M	YES	2-15M	YES								
2400	(8)	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	YES	2-15M	YES	$\begin{gathered} \substack{1-15 \mathrm{M} \\ 1-20 \mathrm{M}} \end{gathered}$	YES	2-20M	YES		
3000	(10)	1-15M	NO	1-15M	NO	2-15M	NO	2-15M	NO	$\begin{array}{\|c} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{array}$	YES	2-20M	YES	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	YES				
3600	(12)	1-20M	NO	2-15M	NO	$\begin{gathered} \text { 1-15M + } \\ 1-20 \mathrm{M} \end{gathered}$	NO	2-20M	NO	$\begin{gathered} 1-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	YES	$\begin{gathered} 1-10 \mathrm{M}+ \\ 3-20 \mathrm{M} \end{gathered}$	YES						
4200	(14)	2-15M	NO	2-20M	NO	$\begin{gathered} \hline \text { 1-10M+ } \\ 2-20 \mathrm{M} \end{gathered}$	NO	$3-20 \mathrm{M}$	NO										
4800	(16)	2-20M	NO	$\begin{gathered} 1-15 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	NO	$\begin{gathered} 1-10 \mathrm{M}+ \\ 3-20 \mathrm{M} \end{gathered}$	NO												
5400	(18)	1-10M + 2-20M	NO	$\begin{gathered} 1-10 \mathrm{M}+ \\ 3-20 \mathrm{M} \end{gathered}$	NO														
6000	(20)	3-20M	NO																

## NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
2. Do not install more than $4-20 \mathrm{M}$ bottom bar or equivalent combination of smaller bars.
3. Bottom reinforcement located $89 \mathrm{~mm}(3.5$ ") from bottom of lintel.
4. This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing"
5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$.

Lintel Span		Lintel - 8"'Thick x 24" Deep (200mm Thick x 600mm Deep), s = 12" (300mm)																	
		Unfactored Point Load																	
		4kN		8kN		12kN		16 kN		20 kN		24 kN		28kN		32 kN		36 kN	
		8001b		1700lb		2600lb		3500lb		4400lb		5300 lb		6200lb		7100 lb		8000lb	
mm	(t)	Bottom Reinf. Steel	$\substack{\text { Stirup } \\ \text { End } \\ \text { Distance }}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\qquad$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$
900	(3)	1-10M	NO	1-10M	YES	1-10M	YES	1-15M	YES										
1200	(4)	1-10M	NO	1-15M	YES	1-15M	YES	1-15M	YES										
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES
1800	(6)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-20M	YES	1-20M	YES
2400	(8)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	YES	1-20M	YES	2-15M	YES	2-15M	YES
3000	(10)	1-15M	NO	1-20M	NO	1-20M	NO	1-20M	NO	1-20M	NO	2-15M	YES	$\underset{\substack{1-15 \mathrm{M} \\ 1-20 \mathrm{M}}}{ }$	YES	2-20M	YES		
3600	(12)	1-20M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	NO	$\begin{aligned} & \text { 1-15M++} \\ & 1-20 \mathrm{M} \end{aligned}$	YES	$\begin{aligned} & \begin{array}{c} \text { 1-10M + } \\ 2-20 \mathrm{M} \end{array} \end{aligned}$	YES				
4200	(14)	1-20M	NO	2-15M	NO	2-15M	NO	$\begin{gathered} \begin{array}{c} 1-15 \mathrm{M}++ \\ 1-20 \mathrm{M} \end{array}{ }_{+}^{+} \\ \hline-2020 \\ \hline \end{gathered}$	NO	2-20M	YES	$\begin{gathered} \substack{1-15 \mathrm{M}++2-20 \mathrm{M}} \end{gathered}$	YES	$\begin{gathered} \hline \text { 1-10M + } \\ 3-20 \mathrm{M} \end{gathered}$	YES				
4800	(16)	2-15M	NO	2-15M	NO	2-20M	NO	$\begin{gathered} 1-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	NO	$\begin{gathered} 1-15 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	YES	$\begin{gathered} 1-10 \mathrm{M}+ \\ 3-20 \mathrm{M} \end{gathered}$	YES						
5400	(18)	2-15M	NO	2-20M	NO	$\begin{gathered} \text { 1-10M + } \\ 2-20 \mathrm{M} \end{gathered}$	NO	$\begin{gathered} \text { 1-15M + } \\ 2-20 \mathrm{M} \end{gathered}$	NO	$\begin{gathered} \text { 1-10M++} \\ 3-20 \mathrm{M} \\ \hline \end{gathered}$	YES								
6000	(20)	$\begin{gathered} \text { 1-15M + } \\ 1-20 \mathrm{M} \end{gathered}$	NO	$\begin{aligned} & \begin{array}{l} \text { 1-10M }+ \\ 2-200 \end{array} \end{aligned}$	NO	3-20M	NO	$\begin{aligned} & \text { 1-15M } \\ & { }_{3}+20 \mathrm{C} \end{aligned}$	NO										

## NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
2. Do not install more than $4-20 \mathrm{M}$ bottom bar or equivalent combination of smaller bars. Do not install more than 4-20M bottom bar or equivalent combin
Bottom reinforcement located $89 \mathrm{~mm}\left(3.5^{\prime \prime}\right)$ from bottom of lintel.
Bottom reinforcement located 89 mm ( 3.5 ") from bottom of lintel.
This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing",
3. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$

## Table L6 Continued

Lintel Span		Lintel - 8"Thick x 32" Deep (200mm Thick x 800mm Deep), s = 18" (450mm)																	
		Unfactored Point Load																	
		4kN/m		9kN/m		$14 \mathrm{kN} / \mathrm{m}$		19kN/m		$24 \mathrm{kN} / \mathrm{m}$		29kN/m		34kN/m		39kN/m		44kN/m	
		8001b/ft		2000lb/ft		$3100 \mathrm{lb} / \mathrm{ft}$		4200lb/ft		$5300 \mathrm{lb} / \mathrm{ft}$		$6500 \mathrm{lb} / \mathrm{ft}$		$7600 \mathrm{lb} / \mathrm{ft}$		8700lb/ft		9800lb/ft	
mm	(t)	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirrup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{gathered} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{gathered}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$
900	(3)	1-10M	NO	1-10M	YES	1-10M	YES	1-10M	YES										
1200	(4)	1-10M	NO	1-10M	YES	1-15M	YES	1-15M	YES										
1500	(5)	1-10M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES								
1800	(6)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES
2400	(8)	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	YES	2-15M	YES	2-15M	YES	2-15M	YES
3000	(10)	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	2-15M	NO	2-15M	YES	2-15M	YES	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	YES		
3600	(12)	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	NO		YES	2-20M	YES				
4200	(14)	1-20M	NO	2-15M	NO	2-15M	NO	2-15M	NO	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	NO	$\begin{gathered} \hline \text { 1-10M + } \\ 2-20 \mathrm{M} \end{gathered}$	YES						
4800	(16)	2-15M	NO	2-15M	NO	2-15M	NO	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	NO	$\begin{aligned} & \hline 1-10 \mathrm{M}+ \\ & 2-20 \mathrm{M} \\ & \hline \end{aligned}$	YES								
5400	(18)	2-15M	NO	2-15M	NO	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \\ \hline \end{gathered}$	NO	2-20M	NO	3-20M	YES								
6000	(20)	2-15M	NO	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	NO	2-20M	NO	$\begin{gathered} \begin{array}{c} \text { 1-10M++} \\ 2-20 \mathrm{M} \end{array} \\ \hline \end{gathered}$	NO										

## NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
Bottom reinforcement located $89 \mathrm{~mm}\left(3.5^{\prime \prime}\right)$ from bottom of lintel.
. This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing".
5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) $>0.4$.


## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table L7 10" Lintel Reinforcement Concentrated Load

Lintel Span		Lintel - 10"Thick x 8" Deep (250mm Thick x 200mm Deep), s = 3" (75mm)																	
		Unfactored Point Load																	
		4kN		6kN		8kN		10kN		12kN		14 kN		16kN		18kN		20kN	
		8001b		1300 lb		1700lb		2200lb		2600lb		3100 lb		3500lb		4000 lb		4400 lb	
mm	(t)	Bottom Reinf. Steel	Stirup   End   Distance	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Sirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \hline \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf.   Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirrup } \\ & \text { End } \\ & \text { Distance } \\ & \hline \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$
900	(3)	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES	1-20M	YES
1200	(4)	1-15M	NO	1-20M	YES	1-20M	YES	2-15M	YES	2-15M	YES								
1500	(5)	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	$\begin{gathered} \hline \text { 1-15M }++ \\ 1-20 \mathrm{M} \end{gathered}$	YES						
1800	(6)	1-15M	NO	1-20M	NO	2-15M	NO	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	NO										
2400	(8)	2-15M	NO																
3000	(10)																		
3600	(12)																		
4200	(14)																		
4800	(16)																		
5400	(18)																		
6000	(20)																		

## NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
2. Do not install more than 2-15M bottom bar or equivalent combination of smaller bars.
3. Bottom reinforcement located $89 \mathrm{~mm}(3.5$ ") from bottom of lintel.
4. This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing"
5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$.

Lintel Span		Lintel - 10"Thick x 12" Deep (250mm Thick x 300mm Deep), $\mathrm{s}=6$ " ${ }^{\text {(150mm) }}$																			
		Unfactored Point Load																			
		4 kN		6.5 kN		9kN		$\frac{11.5 \mathrm{kN}}{2500 \mathrm{lb}}$		$\frac{14 \mathrm{kN}}{3100 \mathrm{lb}}$		$\begin{aligned} & \hline 16.5 \mathrm{kN} \\ & \hline 3700 \mathrm{lb} \end{aligned}$		$\frac{19 \mathrm{kN}}{4200 \mathrm{lb}}$		$\frac{21.5 \mathrm{kN}}{4800 \mathrm{lb}}$		24 kN			
		800	Olb	140	Olb			530	Olb												
mm	(t)	$\begin{gathered} \text { Botom } \\ \text { Reinf: } \\ \text { SRiop } \end{gathered}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \substack{\text { End } \\ \text { Distad } \\ \hline} \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|c\|} \hline \text { Stirup } \\ \text { Bistance } \end{array}$	$\begin{array}{\|l\|l\|l\|} \hline \begin{array}{c} \text { Botton } \\ \text { Reienf. } \\ \text { Steel } \end{array} \end{array}$	$\begin{array}{\|c\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$			$\begin{aligned} & \text { Botom } \\ & \text { Reinf. } \\ & \text { Riteel } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|c} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$		$\begin{gathered} \text { Stirup } \\ \text { End } \\ \text { Eistance } \end{gathered}$	$\begin{aligned} & \text { Botlom } \\ & \text { Reinf. } \\ & \text { Steel } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Stirnu } \\ \text { End } \\ \text { Distance } \end{array}$	$\begin{array}{\|c} \text { Botom } \\ \text { Reinf: } \\ \text { Steel } \end{array}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { End } \\ \text { Distance } \end{array}$			$\begin{array}{\|c} \text { Botom } \\ \text { Reinf: } \\ \text { Seteel } \\ \text { Stion } \end{array}$	$\begin{array}{\|c\|c} \hline \text { Sitimup } \\ \text { Bistand } \\ \text { Distance } \end{array}$
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES		
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES	1-15M	YES		
1500	(5)	1-10M	NO	1-15M	NO	1-20M	YES	1-20M	YES	2-15M	YES										
1800	(6)	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	YES	2-15M	YES	$\begin{gathered} \substack{1-15 M+\\ 1-20 M+} \end{gathered}$	YES		
2400	(8)	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	$\begin{gathered} \substack{1-15 M+\\ 1-20 \mathrm{M}+} \end{gathered}$	NO	2-20M	YES	$\begin{aligned} & \substack{\text { T-10M } \\ 2-20 \mathrm{M}} \end{aligned}$	YES	3-20M	YES				
3000	(10)	1-20M	NO	2-15M	NO	$\begin{array}{\|c\|} \hline-1-15 \mathrm{M}+\underset{1}{1-20 \mathrm{M}}, \\ \hline \end{array}$	NO	$\begin{aligned} & \begin{array}{l} \text { 1-10M }+ \\ 2-2001 \end{array} \end{aligned}$	NO	$\begin{gathered} \begin{array}{c} \text { B-15M+ } \\ 2-20 M \end{array} \end{gathered}$	NO										
3600	(12)	$\begin{array}{\|c\|c\|} \hline \text { 1-15M } \\ 1-20 \mathrm{M} \\ \hline \end{array}$	NO	2-20M	NO	$\begin{array}{\|l\|l\|} \hline-1-15 \mathrm{M}+ \\ 2-20 \mathrm{M} \\ \hline \end{array}$	NO														
4200	(14)	$\begin{array}{\|c\|} \hline \text { 1-10M+ }+20 \mathrm{M} \\ \hline \end{array}$	NO	3-20M	NO																
4800	(16)																				
5400	(18)																				
6000	(20)																				

## NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
2. Do not install more than $3-20 \mathrm{M}$ bottom bar or equivalent combination of smaller bars.

Do not install more than $3-20 \mathrm{M}$ bottom bar or equivalent combin
Bottom reinforcement located 89 mm ( $3.5^{\prime \prime}$ ) from bottom of lintel.
Bottom reinforcement located 89 mm ( 3.5 ") from bottom of lintel.
This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing"
5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table L7 Continued

Lintel Span		Lintel - 10"'Thick x 16" Deep (250mm Thick x 400mm Deep), s = 8" (200mm)																	
		Unfactored Point Load																	
		4kN		7 kN		10kN		13 kN		16 kN		19kN		21 kN		24kN		27kN	
		8001b		1500lb		2200lb		2900lb		3500lb		4200 lb		4700lb		5300 lb		6000 lb	
mm	(t)	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$
900	(3)	1-10M	NO	1-15M	YES	1-15M	YES												
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	YES	1-20M	YES
1800	(6)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	1-20M	NO	2-15M	YES	2-15M	YES
2400	(8)	1-15M	NO	1-20M	NO	1-20M	NO	1-20M	NO	1-20M	NO	2-15M	NO	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	YES	2-20M	YES	$\begin{aligned} & \text { T-10M + } \\ & \text { 2-200 } \end{aligned}$	YES
3000	(10)	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	NO	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	NO	2-20M	NO	$\begin{gathered} 1-15 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	YES	$\begin{gathered} 1-10 \mathrm{M}+ \\ 3-20 \mathrm{M} \end{gathered}$	YES		
3600	(12)	1-20M	NO	2-15M	NO	$\underset{1-20 \mathrm{M}}{\mathrm{t}-15 \mathrm{M}}+$	NO	2-20M	NO	$\underset{2-20 \mathrm{M}}{\substack{1-10 \mathrm{M}}}$	NO	$\begin{gathered} \hline 1-10 \mathrm{M} \\ + \\ 3-20 \mathrm{M} \end{gathered}$	YES						
4200	(14)	2-15M	NO	2-20M	NO	$\begin{gathered} \text { 1-10M + } \\ 2-20 \mathrm{M} \end{gathered}$	NO	3-20M	NO	$\begin{gathered} 1-15 \mathrm{M}+ \\ 3-20 \mathrm{M} \end{gathered}$	NO								
4800	(16)	2-20M	NO	$\begin{gathered} \text { 1-10M + } \\ \text { 2-20M } \end{gathered}$	NO	$\begin{gathered} \text { T-10M + } \\ 3-20 \mathrm{M} \end{gathered}$	NO	4-20M	NO										
5400	(18)	$\begin{gathered} \text { 1-10M + } \\ \text { 2-20M } \end{gathered}$	NO	$\begin{gathered} \text { 1-10M + } \\ 3-20 \mathrm{M} \end{gathered}$	NO	4-20M	NO												
6000	(20)	3-20M	NO	$\begin{gathered} 1-10 \mathrm{M}++ \\ 3-20 \mathrm{M} \end{gathered}$	NO														

## NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
2. Do not install more than $4-20 \mathrm{M}$ bottom bar or equivalent combination of smaller bars.

Bottom reinforcement located $89 \mathrm{~mm}\left(3.5^{\prime \prime}\right)$ from bottom of lintel.
. This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing".
5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) $>0.4$.

Lintel Span		Lintel - 10"Thick x 24" Deep (250mm Thick x 600mm Deep), s = 12" (300mm)																	
		Unfactored Point Load																	
		4kN		8 kN		12kN		16 kN		20kN		24kN		28 kN		32kN		36 kN	
		8001b		1700 lb		2600lb		3500 lb		4400lb		5300 lb		6200lb		7100lb		8000lb	
mm	(t)	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \\ & \hline \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirrup } \\ & \text { End } \\ & \text { Distance } \\ & \hline \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirrup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	Stirup End Distance
900	(3)	1-10M	NO	1-15M	YES														
1200	(4)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	YES										
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES
1800	(6)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	YES	1-20M	YES
2400	(8)	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	YES	2-15M	YES
3000	(10)	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	NO	2-15M	NO	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	NO	2-20M	YES	$\begin{gathered} \hline 1-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \\ \hline \end{gathered}$	YES
3600	(12)	1-20M	NO	2-15M	NO	2-15M	NO	2-15M	NO	2-15M	NO	2-20M	NO	$\begin{gathered} 1-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	YES	$\begin{gathered} \begin{array}{c} \text {-15M } \\ 2-200+ \end{array} \end{gathered}$	YES		
4200	(14)	2-15M	NO	2-15M	NO	2-15M	NO	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	NO	2-20M	NO	$\begin{gathered} \hline 1-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \\ \hline \end{gathered}$	NO	3-20M	YES				
4800	(16)	2-15M	NO	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	NO	2-20M	NO	$\begin{aligned} & \text { 1-10M + } \\ & 2-20 \mathrm{M} \end{aligned}$	NO	$\begin{aligned} & \text { 1-15M + } \\ & 2-20 \mathrm{M} \end{aligned}$	NO	$\begin{gathered} 1-10 \mathrm{M}+ \\ 3-20 \mathrm{M} \end{gathered}$	NO						
5400	(18)	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	NO	2-20M	NO	$\begin{gathered} \begin{array}{c} \text { 1-10M }+ \\ 2-20 \mathrm{M} \end{array} \\ \hline \end{gathered}$	NO	$\begin{aligned} & \hline 1-15 \mathrm{M}+ \\ & 2-20 \mathrm{M} \end{aligned}$	NO	$\begin{gathered} \hline 1-10 \mathrm{M}+ \\ 3-20 \mathrm{M} \end{gathered}$	NO								
6000	(20)	2-20M	NO	1-10M +	NO	3-20M	NO	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 3-20 \mathrm{M} \\ \hline \end{gathered}$	NO										

## NOTES

. Stirrup spacing (s) and end distance are given in "mm" and "inch"
2. Do not install more than $4-20 \mathrm{M}$ bottom bar or equivalent combination of smaller bars.
3. Bottom reinforcement located $89 \mathrm{~mm}\left(3.5^{\prime \prime}\right)$ from bottom of lintel.
4. This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing".
5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$.

Build Anything Better."

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table L7 Continued

Lintel Span		Lintel - 10" Thick x 32" Deep (250mm Thick x 800mm Deep), s = 18" (450mm)																	
		Unfactored Point Load																	
		4kN/m		9kN/m		$14 \mathrm{kN} / \mathrm{m}$		$19 \mathrm{kN} / \mathrm{m}$		$24 \mathrm{kN} / \mathrm{m}$		29kN/m		34kN/m		39kN/m		44kN/m	
		8001b/ft		$2000 \mathrm{lb} / \mathrm{ft}$		$3100 \mathrm{lb} / \mathrm{ft}$		$4200 \mathrm{lb} / \mathrm{ft}$		$5300 \mathrm{lb} / \mathrm{ft}$		$6500 \mathrm{lb} / \mathrm{ft}$		$7600 \mathrm{lb} / \mathrm{ft}$		8700lb/ft		$9800 \mathrm{lb} / \mathrm{ft}$	
mm	(t)	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array}$
900	(3)	1-10M	NO	1-10M	YES														
1200	(4)	1-10M	NO	1-15M	NO	1-15M	YES												
1500	(5)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-15M	YES								
1800	(6)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	YES	1-20M	YES
2400	(8)	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	2-15M	NO	2-15M	YES	2-15M	YES
3000	(10)	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	2-15M	NO	2-15M	NO	2-15M	NO	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	YES	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	YES
3600	(12)	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	NO	2-20M	NO	2-20M	YES				
4200	(14)	1-20M	NO	2-15M	NO	2-15M	NO	2-15M	NO	$\begin{gathered} \substack{1-15 \mathrm{M}++1-20 \mathrm{M} \\ \hline} \end{gathered}$	NO	$\begin{gathered} \begin{array}{c} \text { 1-10M++ } \\ \text { 2-20M } \end{array} \\ \hline \end{gathered}$	NO	$\begin{gathered} \begin{array}{c} 1-15 \mathrm{M}++ \\ \text { 2-20M } \end{array} \end{gathered}$	YES				
4800	(16)	2-15M	NO	2-15M	NO	2-15M	NO	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	NO	$\begin{gathered} 1-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	NO	3-20M	NO						
5400	(18)	2-15M	NO	2-15M	NO	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	NO	2-20M	NO	3-20M	NO								
6000	(20)	2-15M	NO	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	NO	$\begin{gathered} 1-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	NO	$\begin{gathered} \text { 1-15M + } \\ 2-20 \mathrm{M} \end{gathered}$	NO	$\begin{aligned} & \text { 1-15M } \\ & { }_{3}+20 \mathrm{C} \end{aligned}$	NO								

## NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.
Bottom reinforcement located 89 mm ( 3.5 ") from bottom of lintel.
This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing".
5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table L8 12" Lintel Reinforcement Concentrated Load

Lintel Span		Lintel - 12"Thick x 8" Deep (300mm Thick x 200mm Deep), s = 3" (75mm)																	
		Unfactored Point Load																	
		4kN		6 kN		8 kN		10kN		\| 12 kN		14 kN		16kN		18 kN		20kN	
		8001b		1300 lb		1700lb		2200lb				3100 lb		3500 lb		4000 lb		4400lb	
mm	(t)	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \hline \text { Stirup } \\ & \text { End } \\ & \text { Distance } \\ & \hline \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Stee	$\begin{aligned} & \text { Stirrup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$
900	(3)	1-10M	NO	1-10M	NO	1-15M	YES	1-15M	YES	1-20M	YES								
1200	(4)	1-15M	NO	1-20M	NO	1-20M	YES	2-15M	YES	2-15M	YES								
1500	(5)	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	NO	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	YES				
1800	(6)	1-15M	NO	1-20M	NO	2-15M	NO	2-15M	NO	2-20M	NO								
2400	(8)	2-15M	NO	2-20M	NO														
3000	(10)																		
3600	(12)																		
4200	(14)																		
4800	(16)																		
5400	(18)																		
6000	(20)																		

## NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"

Do not install more than 2-20M bottom bar or equivalent combination of smaller bars.
Bottom reinforcement located $89 \mathrm{~mm}\left(3.5^{\prime \prime}\right)$ from bottom of lintel.
4. This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing".
5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$.

Lintel Span		Lintel - 12" Thick x 12" Deep (300mm Thick $\times$ 300mm Deep), $\mathrm{s}=6$ " (150mm)																			
		Unfactored Point Load																			
				6.5 kN		9 kN		$\frac{11.5 \mathrm{kN}}{2500 \mathrm{lb}}$		$\frac{14 \mathrm{kN}}{3100 \mathrm{lb}}$		$\frac{16.5 \mathrm{kN}}{3700 \mathrm{lb}}$		19kN		$\frac{21.5 \mathrm{kN}}{4800 \mathrm{lb}}$		24kN			
		800lb		1400 lb		2000lb				5300 lb											
mm	(t)	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \begin{array}{c} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c} \hline \begin{array}{c} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$			Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	Stirrup End Distance	Bottom Reinf. Steel	Stirup   End   Distance	Bottom Reinf. Steel	Stirup   End   Distance	Bottom Reinf. Steel	$\begin{array}{\|c} \hline \begin{array}{c} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$
900	(3)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	YES										
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	YES		
1500	(5)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	1-20M	NO	1-20M	YES	2-15M	YES		
1800	(6)	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	YES	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	YES		
2400	(8)	1-20M	NO	1-20M	NO	1-20M	NO	2-15M	NO	$\begin{array}{\|c\|} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \\ \hline \end{array}$	NO	2-20M	NO	$\begin{gathered} \text { T-10M + } \\ \text { 2-20M } \end{gathered}$	NO		YES	$\begin{gathered} 1-10 \mathrm{M}+ \\ 3-20 \mathrm{M} \end{gathered}$	YES		
3000	(10)	1-20M	NO	2-15M	NO	$\underset{\substack{1-15 \mathrm{M} \\ 1-20 \mathrm{M}}}{ }$	NO	2-20M	NO	$\begin{array}{\|c\|} \hline 1-15 \mathrm{M}+ \\ 2-20 \mathrm{M} \\ \hline \end{array}$	NO	$\begin{gathered} 1-10 \mathrm{M}++ \\ 3-20 \mathrm{M} \end{gathered}$	NO	4-20M	YES						
3600	(12)	2-15M	NO	2-20M	NO	$\begin{gathered} \begin{array}{c} 1-15 \mathrm{M}++ \\ 2-20 \mathrm{M} \end{array} \\ \hline \end{gathered}$	NO	$\begin{aligned} & \text { 1-10M++} \\ & 3-20 \mathrm{M} \end{aligned}$	NO												
4200	(14)	2-20M	NO	$3-20 \mathrm{M}$	NO	4-20M	NO														
4800	(16)																				
5400	(18)																				
6000	(20)																				

## NOTES

[^16]2. Do not install more than $4-20 \mathrm{M}$ bottom bar or equivalent combination of smaller bars.
3. Bottom reinforcement located $89 \mathrm{~mm}\left(3.5^{\prime \prime}\right)$ from bottom of lintel.
4. This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing"
5. Beams with "NO Stirrups Required" do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$.

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table L8 Continued

Lintel Span		Lintel - 12"'Thick x 16" Deep (300mm Thick x 400mm Deep), s = 8" (200mm)																	
		Unfactored Point Load																	
		4kN		7kN		10 kN		13kN		16 kN		19 kN		21 kN		24 kN		27 kN	
		8001b		1500 lb		2200lb		2900lb		3500lb		4200lb		4700lb		5300lb		6000lb	
mm	(t)	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array} \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{gathered} \hline \text { Stirup } \\ \text { End } \\ \text { Eistance } \\ \hline \end{gathered}$	Bottom Reinf. Steel	$\begin{array}{\|c} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Eistance } \\ \hline \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$
900	(3)	1-10M	NO	1-15M	NO	1-15M	NO												
1200	(4)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO								
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	1-20M	YES
1800	(6)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	YES
2400	(8)	1-15M	NO	1-20M	NO	1-20M	NO	1-20M	NO	1-20M	NO	2-15M	NO	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	NO	2-20M	NO	$\begin{gathered} \text { 1-15M + } \\ 2-20 \mathrm{M} \end{gathered}$	YES
3000	(10)	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	NO	$\begin{gathered} \text { 1-15M + } \\ 1-20 \mathrm{M} \end{gathered}$	NO	2-20M	NO	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	NO	$\begin{gathered} 1-10 \mathrm{M}+ \\ 3-20 \mathrm{M} \end{gathered}$	YES		
3600	(12)	1-20M	NO	2-15M	NO	$\begin{gathered} \substack{1-15 \mathrm{M}++1-20 \mathrm{M}} \end{gathered}$	NO	2-20M	NO	$\begin{gathered} \hline 1-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \\ \hline \end{gathered}$	NO	$\begin{gathered} 1-10 \mathrm{M}+ \\ 3-20 \mathrm{M} \end{gathered}$	NO	4-20M	NO				
4200	(14)	2-15M	NO	2-20M	NO	$\begin{gathered} 1-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	NO	$\begin{gathered} \begin{array}{l} \text { 1-15M + } \\ 2-200+ \end{array} \end{gathered}$	NO	1-10M +   3-20M	NO								
4800	(16)	2-20M	NO	$\begin{gathered} 1-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	NO	$\begin{gathered} 1-10 \mathrm{M}+ \\ 3-20 \mathrm{M} \end{gathered}$	NO	4-20M	NO										
5400	(18)	$\begin{gathered} \text { 1-10M + } \\ 2-20 \mathrm{M} \end{gathered}$	NO	$\begin{gathered} 1-10 \mathrm{M}+ \\ 3-20 \mathrm{M} \end{gathered}$	NO	4-20M	NO												
6000	(20)	3-20M	NO																

## NOTES

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
2. Do not install more than $4-20 \mathrm{M}$ bottom bar or equivalent combination of smaller bars.
3. Bottom reinforcement located $89 \mathrm{~mm}(3.5$ ") from bottom of lintel.
4. This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing".
5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) > 0.4 .

Lintel Span		Lintel - 12"Thick x 24" Deep (300mm Thick x 600mm Deep), s=12" (300mm)																	
		4 kN		8 kN		12 kN		Unfactored Point Load     16 kN 20 kN 24 k						28 kN		32 kN		36 kN	
		8001b		17001b		26001b		35001b		44001b		53001b		62001b		71001b		80001b	
mm	(t)	$\begin{gathered} \hline \text { Botiom } \\ \text { Reinf. } \\ \text { Steel } \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { Stirup } \\ \text { End } \\ \text { istance } \end{array}$	Bottom Reinf Reinf. Stee	$\begin{array}{\|c} \hline \text { Sirimp } \\ \text { Sitnd } \\ \text { Distance } \end{array}$	$\begin{aligned} & \hline \text { Bottom } \\ & \text { Reinf. } \\ & \text { Steel } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \\ \hline \end{array}$	Bottom   Reinf.   Steel	$\begin{array}{\|c\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf.   Steel	$\begin{array}{\|c} \hline \text { Sirimp } \\ \text { Eind } \\ \text { Distance } \end{array}$	$\begin{aligned} & \hline \text { Bottom } \\ & \text { Reinf. } \\ & \text { Steel } \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline \text { Stirup } \\ \text { Endad } \\ \text { Distance } \end{array}$	Bottom   Reinf.   Steel	$\begin{array}{\|c\|c} \hline \text { Sirirup } \\ \text { Eind } \\ \text { Distance } \end{array}$	$\begin{aligned} & \hline \text { Bottom } \\ & \text { Reinf. } \\ & \text { Steel } \end{aligned}$	$\begin{array}{\|c} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	$\begin{array}{\|l\|l\|} \hline \begin{array}{c} \text { Botoom } \\ \text { Reinf: } \end{array} \\ \text { Steel } \end{array}$	$\begin{array}{\|c} \hline \text { Sitimp } \\ \text { End } \\ \text { Distance } \end{array}$
900	(3)	1-10M	NO	1-15M	NO														
1200	(4)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO										
1500	(5)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO								
1800	(6)	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO
2400	(8)	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	NO	2-15M	YES
3000	(10)	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	2-15M	NO	2-15M	NO	$\begin{gathered} \substack{1-15 \mathrm{M}+\\ 1-20 \mathrm{M}} \end{gathered}$	NO	2-20M	NO		YES
3600	(12)	1-20M	NO	2-15M	NO	2-15M	NO	2-15M	NO	2-15M	NO	2-20M	NO	$\begin{aligned} & \begin{array}{l} \text { H-10M+ } \\ 2-200 \mathrm{M} \end{array} \\ & \hline \end{aligned}$	NO	$\begin{aligned} & \begin{array}{l} \text { 1-15M+} \\ 2-20 \mathrm{M} \end{array} \\ & \hline \end{aligned}$	NO		
4200	(14)	2-15M	NO	2-15M	NO	2-15M	NO	$\begin{array}{\|c\|} \hline \begin{array}{c} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \\ \hline \end{array} \\ \hline \end{array}$	NO	2-20M	NO		NO	3-20M	NO				
4800	(16)	2-15M	NO	$\begin{aligned} & \text { R-15M+ }+1 \\ & \hline \end{aligned}$	NO	2-20M	NO	$\begin{aligned} & \hline \begin{array}{l} \text { 1-10M+ } \\ 2-20 \mathrm{M} \\ \hline \end{array} \\ & \hline \end{aligned}$	NO		NO	$\begin{aligned} & \hline \text { 1-10M+ } \\ & 3-20 \mathrm{M} \\ & \hline \end{aligned}$	NO	4-20M	NO				
5400	(18)	$\begin{array}{\|c\|} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \\ \hline \end{array}$	NO	2-20M	NO	$\begin{aligned} & \mathrm{c}-1-10 \mathrm{M}+ \\ & 2-20 \mathrm{M} \end{aligned}$	NO	3-20M	NO	$\begin{gathered} \begin{array}{c} \text {-10M } \\ 3-20 \mathrm{M} \end{array} \end{gathered}$	NO	4-20M	NO						
6000	(20)	2-20M	NO	$\begin{aligned} & \begin{array}{l} \text { 2-10M+ } \\ 2-20 \mathrm{M} \end{array} \end{aligned}$	NO	3-20M	NO	$\begin{array}{\|l\|l\|} \hline 1-15 \mathrm{M}+ \\ 3-20 \mathrm{M} \\ \hline \end{array}$	NO										

## notes

1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
2. Do not install more than $4-20 \mathrm{M}$ bottom bar or equivalent combination of smaller bars. Bottom reinforcement located 89 mm (3.5") from bottom of lintel.
Bottom reinforcement located $89 \mathrm{~mm}(3.5$ ") from bottom of lintel.
This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing".
3. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where Sa (0.2) $>0.4$.

Table L8 Continued

Lintel Span		Lintel - 12"Thick x 32" Deep (300mm Thick x 800mm Deep), s = 18" (450mm)																	
		Unfactored Point Load																	
		4kN/m		9kN/m		14kN/m		19kN/m		$24 \mathrm{kN} / \mathrm{m}$		29kN/m		34kN/m		39kN/m		44kN/m	
		800lb/ft		2000lb/ft		$3100 \mathrm{lb} / \mathrm{ft}$		4200lb/ft		$5300 \mathrm{lb} / \mathrm{ft}$		$6500 \mathrm{lb} / \mathrm{ft}$		$7600 \mathrm{lb} / \mathrm{ft}$		8700lb/ft		9800lb/ft	
mm	(t)	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirrup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|c} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|c\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$	Bottom Reinf. Steel	$\begin{aligned} & \text { Stirrup } \\ & \text { End } \\ & \text { Distance } \end{aligned}$	Bottom Reinf. Steel	$\begin{array}{\|l\|} \hline \text { Stirup } \\ \text { End } \\ \text { Distance } \end{array}$
900	(3)	1-10M	NO																
1200	(4)	1-10M	NO	1-15M	NO	1-15M	NO												
1500	(5)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO								
1800	(6)	1-10M	NO	1-10M	NO	1-10M	NO	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO
2400	(8)	1-10M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	2-15M	NO	2-15M	NO	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	NO
3000	(10)	1-15M	NO	1-15M	NO	1-15M	NO	1-20M	NO	2-15M	NO	2-15M	NO	$\underset{1-20 \mathrm{M}}{\substack{1-15 \mathrm{M}}}$	NO	$\underset{1-20 \mathrm{M}}{\substack{1-15 \mathrm{M} \\ \hline}}$	NO	2-20M	YES
3600	(12)	1-15M	NO	1-20M	NO	1-20M	NO	2-15M	NO	$\underset{1-20 \mathrm{M}}{\substack{1-15 \mathrm{M} \\ \hline}}$	NO	$\underset{1-20 \mathrm{M}}{\substack{1-15 \mathrm{M} \\ \hline \\ \hline \\ \hline \\ \hline}}$	NO	2-20M	NO	$\begin{gathered} 1-15 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	NO		
4200	(14)	1-20M	NO	2-15M	NO	2-15M	NO	$\begin{gathered} \text { 1-15M + } \\ 1-20 \mathrm{M} \end{gathered}$	NO	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	NO	$\begin{gathered} 1-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	NO	$\begin{gathered} 1-15 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	NO				
4800	(16)	2-15M	NO	$\begin{aligned} & \hline \begin{array}{c} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{array} \\ & \hline \end{aligned}$	NO	$\begin{gathered} \text { 1-15M++} \\ 1-20 \mathrm{M} \end{gathered}$	NO	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	NO	$\begin{gathered} \hline 1-10 \mathrm{M}+ \\ 2-20 \mathrm{M} \end{gathered}$	NO	3-20M	NO						
5400	(18)	$\begin{gathered} \text { 1-15M + } \\ \text { 1-20M } \end{gathered}$	NO	$\begin{gathered} \hline 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	NO	$\begin{gathered} 1-15 \mathrm{M}+ \\ 1-20 \mathrm{M} \end{gathered}$	NO	3-20M	NO	3-20M	NO	$\begin{gathered} 1-15 \mathrm{M}+ \\ 3-20 \mathrm{M} \end{gathered}$	NO						
6000	(20)	$\underset{\substack{1-15 \mathrm{M} \\ 1-20 \mathrm{M}}}{+}$	NO	2-20M	NO	$\begin{gathered} \begin{array}{c} \text { 1-10M } \\ 2-20 \mathrm{M} \end{array} \end{gathered}$	NO	$\begin{gathered} \begin{array}{c} \text { 1-15M } \\ 2-20 \mathrm{M} \end{array}+ \end{gathered}$	NO	$\begin{gathered} \text { 1-15M + } \\ 3-20 \mathrm{M} \end{gathered}$	NO								

## NOTES

. Stirrup spacing (s) and end distance are given in "mm" and "inch"
2. Do not install more than 4-20M bottom bar or equivalent combination of smaller bars.

Bottom reinforcement located 89 mm ( 3.5 ") from bottom of lintel.
This table to be used in conjunction with the "Lintel Design Limitations" \& "Lintel Drawing".
5. Cells with zero end distance do not require stirrups, except provide a minimum of three stirrups at each end of the lintel where $\mathrm{Sa}(0.2)>0.4$.

## LOGIX ${ }^{\oplus}$ INSULATED CONCRETE FORMS

## Concentrated Point Load Table

Table C.1. Maximum Unfactored Point Load on a Solid Wall Without Opening

Solid Wall Length Under a Point Load, m(ft)	$0.91(3)$	$1.22(4)$	$1.52(5)$
Maximum Unfactored Point Load, kN	225	300	375

## NOTES:

1. Provide beam pockets, as necessary.
2. In addition to the wall reinforcing required in the following tables, two additional 15 M vertical bars shall be installed directly below the point load.


## Stair Opening Tables

Table A.12. Above Grade Wall Distributed Horizontal Reinforcement at Stair Openings
Seismic Zone Classification: Sa (0.2) $\leq 1.75$
Hourly Wind Pressure: $q_{1 / 50} \leq 1.05$

Wall Thickness		Maximum Stair Opening (Laterally Unsupported Length at Top of the Wall)		Block   Height (in)	Horizontal Steel (Size and Spacing), mm (in)										
		Seismic Zone Classification, $\mathrm{Sa}(0.2)$													
		$\leq 0.4$	$\leq 0.7$			$\leq 1.75$									
		Hourly Wind Pressure, $\mathrm{q}_{1 / 50}(\mathrm{kPa})$													
mm	(in)			m	(ft)	$\leq 0.5$			$\leq 0.75$			$\leq 1.05$			
150				4.6	(15)	$12^{\prime \prime}$ and 18"	10M @	450	(18)	15M @	450	(18)	15M @	300	(12)
				16"		10M @	400	(16)	15M @	400	(16)	15M @	300	(12)	
200	(8)	5.2	(17)		$12^{\prime \prime}$ and 18"	10M @	450	(18)	15M @	450	(18)	15M @	300	(12)	
				16"	10M @	400	(16)	15M @	400	(16)	15M @	300	(12)		
250	(10)	5.2	(17)	12" and 18"	10M @	450	(18)	15M @	450	(18)	15M @	300	(12)		
				$16 "$	10M @	400	(16)	15M @	400	(16)	15M @	300	(12)		
300	(12)	5.8	(19)	$12^{\prime \prime}$ and 18"	10M @	450	(18)	10M @	450	(18)	15M @	300	(12)		
				$16 "$	10M @	400	(16)	10M @	400	(16)	15M @	300	(12)		

## NOTES

This table to be used in conjunction with the "Design Parameters".
This table applies to all height of above grade walls where there is no lateral supports at the floor level because of stair opening.
The laterally unsupported length at the top of the wall is the dimension of the stair opening parallel to the wall.
Single bars are to be staggered and the vertical bars are to be placed between these staggered bars, as per Detail A. 1 and A. 2 .
Increase the horizontal reinforcement as per this table and extend beyond the stair opening a minimum of 900 mm ( $3^{\prime}-0^{\prime \prime}$ ), bend bars if necessary at wall corners.
 horizontal bars around the corner to provide the minimum required $900 \mathrm{~mm}\left(3^{\prime}-0^{\prime \prime}\right)$ extension.
7. Increase the vertical reinforcement on each side of the stair opening per the "Design Limitation" noted in section 5.5.5.
8. Place the reinforcing for 6 " 8 " and 10 " thick wall in accordance with Detail A.1.
9. Provide two layers of indicated horizontal reinforcing for 300 mm (12") walls. Place each layer as shown in Detail A. 2
10. Alternating horizontal bar spacing of $12^{\prime \prime}$ o.c. and $24^{\prime \prime}$ o.c. may be used to achieve an average spacing of $18^{\prime \prime}$ o.c. where $18^{\prime \prime}$ o.c. spacing is specified for horizontal bars.
11. Provide 3 horizontal bars in every two rows of $18^{\prime \prime}$ high block to achieve an average spacing of 12 " o.c. where $12^{\prime \prime}$ spacing o.c. is specified for horizontal bars.

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table B. 5. Below Grade Wall Distributed Horizontal Reinforcement at Stair Opening for Seismic Zone Classification $\mathrm{Sa}(0.2) \leq 0.7$, Hourly Wind Pressure , $\mathrm{q}_{1 / 50} \leq 1.05 \mathrm{kPa}$, and Backfill
Seismic Zone Classification: Sa $(0.2) \leq 0.7$
Hourly Wind Pressure: $q_{1 / 50} \leq 1.05$
Backfill Equivalent Fluid Density: $480 \mathrm{~kg} / \mathrm{m} 3$ (30pcf)

Wall Thickness		Block Height (in)	Horizontal Steel (Size and Spacing), mm (in)												
		Seismic Zone Classification, $\mathrm{Sa}(0.2)$													
		2.44m (8')	3.05 m (10')			3.66 m (12')			4.27m (14')						
mm	(in)		Seismic Zone Classification, $\mathrm{Sa}(0.2) \leq 0.25$												
150	(6)		12 " and 18"	15M @	450	(18)	2-15M @	450	(18)						
			$16 "$	15M @	400	(16)	2-15M @	400	(16)						
200	(8)	$12^{\prime \prime}$ and 18"	15M @	450	(18)	2-15M @	450	(18)	2-15M @	450	(18)	$\begin{gathered} \text { 2- 15M } \\ @ \end{gathered}$	300	(12)	
		16"	15M @	400	(16)	15M @	400	(16)	2-15M @	400	(16)	$\text { 2- }{ }_{@}^{15 \mathrm{M}}$	400	(16)	
250	(10)	$12^{\prime \prime}$ and 18"	15M @	450	(18)	15M @	450	(18)	2-15M @	450	(18)	$\begin{gathered} 2-15 \mathrm{M} \\ @ \\ \hline \end{gathered}$	450	(18)	
		$16 "$	15M @	400	(16)	15M @	400	(16)	15M @	400	(16)	$\begin{gathered} 2-15 \mathrm{M} \\ @ \\ \hline \end{gathered}$	400	(16)	
300	(12)	$12^{\prime \prime}$ and 18"	15M @	450	(18)	15M @	450	(18)	15M @	450	(18)	$\begin{gathered} \text { 2- 15M } \\ @ \end{gathered}$	450	(18)	
		$16 "$	15M @	400	(16)	15M @	400	(16)	15M @	400	(16)	$\begin{gathered} \text { 2- 15M } \\ @ \end{gathered}$	400	(16)	
			Seismic Zone Classification, $0.25<\mathrm{Sa}(0.2) \leq 0.7$												
150	(6)	12 " and 18"													
		$16 "$													
200	(8)	12 " and 18"	2-15M @	450	(18)										
		$16 "$	2-15M @	400	(16)										
250	(10)	$12^{\prime \prime}$ and 18"	2-15M @	450	(18)	2-15M @	450	(18)							
		$16^{\prime \prime}$	15M @	400	(16)	2-15M @	400	(16)							
$300$	(12)	$\begin{array}{\|c\|} \hline 12^{\prime \prime} \text { and } 18 " \\ \hline 16^{\prime \prime} \\ \hline \end{array}$	$\begin{gathered} 15 \mathrm{M} @ \\ 15 \mathrm{M} @ \\ \hline \end{gathered}$	450 400	(18) (16)	$2-15 \mathrm{M}$ @ 2-15M @	450 400	$\begin{aligned} & (18) \\ & \hline(16) \end{aligned}$	$\begin{aligned} & \text { 2-15M @ } \\ & \hline 2-15 M @ \end{aligned}$		$\begin{array}{r} (18) \\ \hline(16) \end{array}$				

## NOTES

1. This table to be used in conjunction with the "Design Parameters".
2. This table applies to all height of below grade walls where there is no lateral supports at the floor level because of stair opening.
3. The laterally unsupported length at the top of the wall is the dimension of the stair opening parallel to the wall.

The below grade wall maybe backfilled up to 6 " below the top of the wall.
5. Single bars are to be staggered between first two slots of ICF web on inside face of wall. The vertical bars are to be placed between these staggered bars, as per Detail B.1.
6. Where two bars are specified, they are to be placed as a single bundled bar staggered between the first two slots of the ICF web on inside face of the wall. The vertical bars are to be placed between these staggered bars, as per Detail B.1.
7. Increase the horizontal reinforcement as per this table and extend beyond the stair opening a minimum of $900 \mathrm{~mm}\left(3^{\prime}-0^{\prime \prime}\right)$, bend bars if necessary at wall corners.
8. Provide a minimum of $1.22 \mathrm{~m}\left(4^{\prime}-0^{\prime \prime}\right)$ length of laterally supported wall on each side of the opening. The $1.22 \mathrm{~m}\left(4^{\prime}-0^{\prime \prime}\right)$ length may be a perpendicular wall on the same side as the stair opening. Bend horizontal bars around the corner to provide the minimum required $900 \mathrm{~mm}\left(3^{\prime}-0^{\prime \prime}\right)$ extension.
9. Increase the vertical reinforcement on each side of the stair opening per the "Design Limitation" noted in section 5.5.5.
10. Reinforce the foundation wall at the stair opening as per the below grade wall reinforcement tables and this table for a minimum of 1.22 m ( $4^{\prime}-0^{\prime \prime}$ ) beyond each end of the stair opening for foundation wall that would not otherwise require reinforcing.
11. Basement walls with stair opening at locations with Seismic Zone Classification $\mathrm{Sa}(0.2)>0.7$ or Backfill Equivalent Fluid Density $>480 \mathrm{~kg} / \mathrm{m} 3$ ( 30 pcf) shall be designed by a professional engineer.
12. Alternating horizontal bar spacing of $12^{\prime \prime}$ o.c. and $24^{\prime \prime}$ o.c. may be used to achieve an average spacing of $18^{\prime \prime}$ o.c. where $18^{\prime \prime}$ o.c. spacing is specified for horizontal bars.
13. Provide 3 horizontal bars in every two rows of $18^{\prime \prime}$ high block to achieve an average spacing of $12^{\prime \prime}$ o.c. where $12^{\prime \prime}$ spacing o.c. is specified for horizontal bars.
14. Provide 4 horizontal bars in every three rows of $16^{\prime \prime}$ high block to achieve an average spacing of $12^{\prime \prime}$ o.c. where $12^{\prime \prime}$ spacing o.c. is specified for horizontal bars.

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table A.13. Bar Spacing Required at Each Side of the Stair Opening

STable, mm (in)	Laterally Unsupported Length of the Wall (Stair Opening Length), m (ft)						
	5.7 (19)	5.1 (17)	4.5 (15)	3.9 (13)	2.7 (9)	2.1 (7)	1.5 (5)
	$S_{\text {Reduced }}$						
1200 (48)	350 (14)	375 (15)	400 (16)	450 (18)	550 (22)	625 (25)	725 (29)
1050 (42)	300 (12)	325 (13)	350 (14)	400 (16)	475 (19)	550 (22)	625 (25)
1000 (40)	275 (11)	300 (12)	325 (13)	375 (15)	450 (18)	525 (21)	600 (24)
900 (36)	250 (10)	275 (11)	300 (12)	325 (13)	400 (16)	475 (19)	550 (22)
800 (32)	225 (9)	250 (10)	275 (11)	300 (12)	375 (15)	425 (17)	475 (19)
750 (30)	200 (8)	225 (9)	250 (10)	275 (11)	350 (14)	400 (16)	450 (18)
600 (24)	175 (7)	175 (7)	200 (8)	225 (9)	275 (11)	300 (12)	350 (14)
450 (18)			150 (6)	150 (6)	200 (8)	225 (9)	275 (11)
400 (16)				150 (6)	175 (7)	200 (8)	225 (9)
300 (12)						150 (6)	175 (7)

## NOTES:

1. $\quad \mathrm{S}_{\text {REDUCED }}=$ the bar spacing ( $\mathrm{mm} / \mathrm{in}$ ) required at the sides of the stair opening.
2. $\quad \mathrm{S}_{\text {TABLEES }}=$ the required bar spacing ( $\mathrm{mm} / \mathrm{in}$ ) for a laterally supported wall as determined from above grade and below grade walls tables.
 to prepare the design in accordance with applicable standards.

## LOGIX INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Laterally Supported Foundation Wall Detail and Table


## Detail B.2. Laterally Supported Foundation Wall

Table B.6. Maximum Height of Finish Ground Above Basement Floor

Maximum Height of Finish Ground Above Basement Floor			
	Height of Foundation Wall		
Minimum Wall Thickne	$\leq 2.5 \mathrm{~m}$ ( $\left.8^{\prime}-2{ }^{\prime \prime}\right)$	>2.5m \& 52.75 m (9'-0")	>2.75m \& 53.0 m (9'-10")
$6{ }^{\prime \prime}$	1.8m (5'-10")	1.6 m (5'-3")	1.6 m (5'-3")
8"	2.3 m (7'-6")	2.3 m (7'-6")	2.2 m (7'-2")
10"	2.3 m (7'-6")	2.6 m (8'-6")	2.85m (9'-4")
12"	2.3 m (7'-6")	2.6 m (8'-6")	2.85m (9'-4")

## NOTES:

[^17]Build Anything Better."

Laterally Unsupported Foundation Wall Detail and Table (Knee Wall)


## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING



[^18]
## Detail B.4. Laterally Unsupported Foundation Wall (Knee Wall) with Brick Veneer

[^19]96

## Ledger Connection Detail and Table



Detail C.1. Wood Ledger Connection

Table C.2. Floor Ledger Anchor Bolts Size and Spacing

Anchor Bolt Diameter	Minimum Spacing of Staggered Anchors, in					
	Tie Spaing	Floor span, ft (m)				
		8' (2.44m)	$12^{\prime}$ (3.66m)	16' (4.88m)	$20^{\prime}$ (6.1m)	24' (7.32m)
1/2"	$6 "$	18"	12"	12"	$6{ }^{\prime \prime}$	$6{ }^{\prime \prime}$
	8"	$16 "$	$16 "$	8"	8"	8"
5/8"	$6 "$	24"	18"	12"	12"	$6 "$
	8"	24"	$16 "$	$16 "$	8"	8"

## NOTES:

1. Anchor bolts to be installed at the indicated spacing and staggered as shown.
2. Design assumes floor ledger supports vertical floor load only. Design of floor diaphragm by others.

Design loads: 40psf ( 1.9 kPa ) floor live load, $15 \mathrm{psf}(0.7 \mathrm{kPa})$ floor dead load.
Anchor bolts shall conform to the requirements of ASTM standard A307.
Anchor bolt connection to be installed at Dry Service Condition.

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## Brick Ledge Detail and Table



Detail C. 2. Brick Ledge Connection


## Detail C.3. xLerator Ledge Reinforcement

Table C． 3 Brick Ledge Load Capacity

	Application	Capacity
Brick	Max 4＂thick	
	Max 20kN／cu．m	
$9.6 \mathrm{~m}\left(31^{\prime}-6 "\right)$ high		
		6．4m（21＇）Truibutary floor width
	$0.7 \mathrm{kPa}(15 \mathrm{psf})$ Dead Load	
Other	$1.9 \mathrm{kPa}(40 \mathrm{psf})$ Live Load	

## NOTES：

1．1．Concrete Ledge reinforcement is to support floor framing and masonry veneer in conformance with the＂Design Limitations＂
2．2．The concrete ledge is to support uniformly distributed loads only．It is not to support concentrated load．
3．3．The above grade and below grade wall reinforcing tables include the effects of using the ledge to support floor framing．
4．The below grade wall reinforcing tables include the effects of using the ledge to support masonry veneer．
5．5．The maximum brick height given does not account for windows．To include the effect of windows，it is necessary to calculate an effective brick height．
6．The ledge reinforcement is 10 M hooked rebar as shown in Detail C．2．It is to be placed 6 ＂or $8^{\prime \prime}$ on center as shown．


## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

## Footing Details and Tables



Table F.1- Footing Dowels Size and Spacing

Rebar Diameter	Maximum Spacing of Vertical Footing Dowels, in				
	Backfill Height, ft (m)				
	4' (1.22m)	$6{ }^{\prime}$ (1.83m)	8' (2.44m)	10' (3.05m)	12' (3.66)
Seismic Zone Classification: $\mathrm{Sa}(0.2) \leq 0.25$					
10M	48"	48"	40"	8"	8"
15M	48"	48"	$48^{\prime \prime}$	$16 "$	8"
Seismic Zone Classification: $\mathrm{Sa}(0.2) \leq 1.20$					
10M	24"	24"	16"	8"	
15M	24"	24"	24"	8"	8"
Seismic Zone Classification: $\mathrm{Sa}(0.2) \leq 1.75$					
10M	24"	24"	8"		
15M	24"	24"	$16 "$	8"	8"

## notes:

1. Footing Dowels to be installed as per Details F.1.
2. Provide $18^{\prime \prime}$ long straight dowels for $\mathrm{Sa}(0.2) \leq 0.4$ embedded 6 " into the footing.
3. Provide $30^{\prime \prime} \mathrm{V} \times 8^{\prime \prime} \mathrm{H}$ bent dowels for $\mathrm{Sa}(0.2)>0.4$ embedded 8 " into the footing.
4. Provide $30 " \mathrm{~V} \times 8^{\prime \prime} \mathrm{H}$ bent dowels embedded $8^{\prime \prime}$ into the footing at shear walls locations, matching the size and spacing of vertical bars of the shear walls.

Table F.2- Minimum Exterior Strip Footing Sizes Not Supporting Roof Loads

ICF Wall Thickness, in (mm)	Minimum Footing Width x Thickness, in x in							
	Allowable Soil Bearing Pressure, psf (kPa)							
	3000 (144)		2500 (120)		2000 (96)		1500 (72)	
Two Storey - ICF Basement Walls, Wood Main Floor Walls, and Wood Second Floor Walls								
6 (150)	16"	x 6 "	16"	$\times 6 "$	16"	x 6"	20"	x 6"
8 (200)	18"	x6"	$18 "$	x 6 "	18"	x 6"	22"	x 6 "
10 (250)	20"	$\times 6$	20"	x 6 "	20"	x 6"	24"	x 6"
12 (300)	22"	x6"	22"	x 6 "	22"	x 6"	26"	x 8"
Two Storey - ICF Basement Walls, ICF Main Floor Walls, and Wood Second Floor Walls								
6 (150)	16"	$\times 6$	18"	x 6 "	22"	x 8 "	28"	x 8"
8 (200)	18"	$\times 6{ }^{\prime \prime}$	20"	$\times 6{ }^{\prime \prime}$	26"	x 8"	34"	x 10"
10 (250)	20"	x6"	$24 "$	x 8 "	30"	x 10"	40"	$\times 101$
12 (300)	22"	x 8"	26"	x 8"	32"	x 10"	42"	x 12"
Two Storey - ICF Basement Walls, ICF Main Floor Walls, and ICF Second Floor Walls								
6 (150)	18"	x 8"	20"	x 8"	26"	x 10"	34"	x 10"
8 (200)	22"	x 8"	26"	x 8 "	32 "	x 10"	42"	x 12"
10 (250)	26"	x 8"	30"	$\times 101$	38"	x 12"	50"	x 14"
12 (300)	26"	x 8"	32"	x 10"	40"	x 12"	$52 "$	x 14"
One Storey - ICF Basement Walls, and Wood Main Floor Walls								
6 (150)	16"	$\times 6 "$	$16 "$	x 6 "	16"	x 6 "	16"	x 6"
8 (200)	18"	$\times 6$	18"	x 6"	18"	x 6 "	18"	$\times 6{ }^{\prime \prime}$
10 (250)	20"	$\times 6$	20"	x 6"	20"	x 6"	20"	x 6"
12 (300)	22"	$\times 6$	22"	x 6"	22"	x 6"	22"	x 6 "
One Storey - ICF Basement Walls, and ICF Main Floor Walls								
6 (150)	16"	$\times 6 "$	16"	x6"	18"	x6"	24"	x 8"
8 (200)	18"	x6"	18"	x 6 "	22"	x 8 "	28"	x 8"
10 (250)	20"	$\times 6 "$	20"	x 6"	26"	x 8"	$34 "$	x 10"
12 (300)   NOTES:   All footings are	22"   inforce	x 8"   ntinuou	22"   rawing		28"	x 8"	$36 "$	$\frac{\times 10^{\prime \prime}}{}$

2. Refer to the Canadian Design Limitations for maximum floor and roof spans and loads.
3. This table does not include masonry veneer. Increase the footing width by 2 "and the thickness by 1 " for:
a. Every $12^{\prime}-0$ " of masonry veneer for 3000 psf soil bearing capacity.
b. Every $10^{\prime}-0^{\prime \prime}$ of masonry veneer for 2500 psf soil bearing capacity.
c. Every $8^{\prime}-0^{\prime \prime}$ of masonry veneer for 2000 psf soil bearing capacity.
d. Every $6^{\prime}-0$ " of masonry veneer for 1500 psf soil bearing capacity.
4. The footing size for locations with $\mathrm{Sa}(0.2)>0.4$ to be the larger of 30 " wide by 12 " deep or the size shown in the table.

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table F.3- Minimum Exterior Strip Footing Sizes Supporting Roof Snow Loads $\leq \mathbf{2 k P a}$

ICF Wall Thickness, in (mm)	Minimum Footing Width x Thickness, in x in							
	Allowable Soil Bearing Pressure, psf (kPa)							
	3000 (144)		2500 (120)		2000 (96)		1500 (72)	
Two Storey - ICF Basement Walls, Wood Main Floor Walls, and Wood Second Floor Walls								
6 (150)	16"	$\times 6 "$	$18{ }^{\prime \prime}$	x 6 "	22"	x $8{ }^{\prime \prime}$	28"	x 8"
8 (200)	18"	x6"	20"	x 6 "	24"	x 8"	32"	x 10"
10 (250)	20"	x6"	20"	x 6 "	26"	x 8"	34"	x 10"
12 (300)	22"	x 8 "	22"	x 8"	28"	x 8"	36"	x 10"
Two Storey - ICF Basement Walls, ICF Main Floor Walls, and Wood Second Floor Walls								
6 (150)	20"	x 8"	24"	x 8"	28"	x 10"	38"	x 12"
8 (200)	22"	x 8 "	26"	$\times 101$	32"	$\times 101$	44"	x 12"
10 (250)	24"	$\times 8{ }^{\prime \prime}$	30"	$\times 10 "$	36"	x 10"	48"	x 14"
12 (300)	26"	$\times 8{ }^{\prime \prime}$	32"	x 10"	38"	x 12"	52"	x 14"
Two Storey - ICF Basement Walls, ICF Main Floor Walls, and ICF Second Floor Walls								
6 (150)	22"	x 8 "	26"	x 10"	32"	x 10"	44"	x 12"
8 (200)	26"	$\times 10$	30"	$\times 101$	38"	x 12"	50"	x 14"
10 (250)	30"	$\times 10$	36"	x 12"	44"	x 14"	$58 "$	x 16"
12 (300)	30"	x 10"	36"	x 12"	46"	x 14"	60"	x 16"
One Storey - ICF Basement Walls, and Wood Main Floor Walls								
6 (150)	16"	$\times 6 "$	16"	x 6"	18"	$\times 6 "$	24"	x 8"
8 (200)	18"	$\times 6$	18"	x 6"	20"	$\times 6$	26"	x 8"
10 (250)	20"	$\times 6 "$	20"	x 6"	22"	$\times 6 "$	28"	x 8"
12 (300)	22"	$\times 6 "$	22"	x 6"	22"	$\times 6$ "	30"	x 8"
One Storey - ICF Basement Walls, and ICF Main Floor Walls								
6 (150)	16"	$\times 6 "$	20"	x 8"	24"	$\times 8{ }^{\prime \prime}$	32"	x 10"
8 (200)	20"	x 8 "	24"	x 8 "	28"	x 10"	38"	x 10"
10 (250)	22"	x 8 "	26"	x 8"	32"	$\times 101$	44"	x 12"
12 (300)	24"	x 8"		$\times 101$	34"	$\times 10 "$	46"	x 12"
2. Refer to the Canadian Design Limitations for maximum floor and roof spans and loads.   3. This table does not include masonry veneer. Increase the footing width by 2 " and the thickness by 1 " for:   a. Every $12^{\prime}-0$ " of masonry veneer for 3000 psf soil bearing capacity.   b. Every $10^{\prime}-0$ " of masonry veneer for 2500 psf soil bearing capacity.   c. Every $8^{\prime}-0^{\prime \prime}$ of masonry veneer for 2000psf soil bearing capacity.   d. Every $6^{\prime}-0^{\prime \prime}$ of masonry veneer for 1500 psf soil bearing capacity.								
4. The footing siz	ations	$\begin{aligned} & \text { Opsf soil } \\ & 0.4 \text { to } \end{aligned}$	" wide	the size				

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table F.4- Minimum Exterior Strip Footing Sizes Supporting Roof Snow Loads $\leq \mathbf{4 k P a}$

ICF Wall Thickness, in (mm)	Minimum Footing Width x Thickness, in x in							
	Allowable Soil Bearing Pressure, psf (kPa)							
	3000 (144)		2500 (120)		2000 (96)		1500 (72)	
Two Storey - ICF Basement Walls, Wood Main Floor Walls, and Wood Second Floor Walls								
6 (150)	18"	x 8"	22"	x 8"	26"	x 10"	$36 "$	x 10"
8 (200)	20"	x 8"	24"	x 8"	28"	x 10"	$38{ }^{\prime \prime}$	x 10"
10 (250)	20"	x 6"	24"	x 8"	30"	x 10"	40"	$\times 101$
12 (300)	22"	x 8"	26"	x 8"	32"	x 10"	42"	x 12"
Two Storey - ICF Basement Walls, ICF Main Floor Walls, and Wood Second Floor Walls								
6 (150)	22"	x 8 "	28"	x 10"	34"	x 12"	44"	x 14"
8 (200)	26"	x 10"	30"	x 10"	38"	x 12"	$50 "$	x 14"
10 (250)	28"	x 10"	$34 "$	x 12"	42"	x 12"	$56 "$	x 16"
12 (300)	30"	x 10"	36"	x 12"	44"	x 14"	58"	x 16"
Two Storey - ICF Basement Walls, ICF Main Floor Walls, and ICF Second Floor Walls								
6 (150)	26"	x 10"	30"	x 12"	38"	x 12"	50"	x 14"
8 (200)	30"	x 12"	$34 "$	x 12"	44"	x 14"	58"	x 16"
10 (250)	$34 "$	x 12"	40"	x $14{ }^{\prime \prime}$	50"	x 16"	66"	x 18"
12 (300)	$34 "$	x 12"	40"	x $14{ }^{\prime \prime}$	50"	x 16"	68"	x 18"
One Storey - ICF Basement Walls, and Wood Main Floor Walls								
6 (150)	16"	x 6 "	18"	x 6"	22"	x 8 "	30"	x 10"
8 (200)	18"	x 6 "	20"	$\times 6 "$	24"	x 8"	32"	$\times 10 "$
10 (250)	20"	x 6 "	22"	x 6"	26"	$\times 8{ }^{\prime \prime}$	34"	$\times 101$
12 (300)	22"	x 8"	22"	x 8"	28"	x 8"	38"	x 10"
One Storey - ICF Basement Walls, and ICF Main Floor Walls								
6 (150)	20"	x 8"	24"	$\times 8{ }^{\prime \prime}$	30"	$\times 10 "$	38"	x 12"
8 (200)	22"	x 8"	28"	x 10"	$34 "$	x 10"	$44^{\prime \prime}$	x 12"
10 (250)	26"	x 8 "	30"	x 10"	38"	x 12"	50"	x 14"
$12 \text { (300) }$   OTES:   All footings are	26"   inforced	x 8"	32"   drawing	$\underbrace{\times 10 "}$	40"	x 12"	52"	x 14"

2. Refer to the Canadian Design Limitations for maximum floor and roof spans and loads.
3. This table does not include masonry veneer. Increase the footing width by $2^{\prime \prime}$ and the thickness by $1^{\prime \prime}$ for:
a. Every $12^{\prime}-0$ " of masonry veneer for 3000 psf soil bearing capacity.
b. Every $10^{\prime}-0^{\prime \prime}$ of masonry veneer for 2500 psf soil bearing capacity.
c. Every $8^{\prime}-0^{\prime \prime}$ of masonry veneer for 2000psf soil bearing capacity.
d. Every $6^{-0} 0$ of masonry veneer for 1500 psf soil bearing capacity.
4. The footing size for locations with $\mathrm{Sa}(0.2)>0.4$ to be the larger of 30 " wide by $12^{\prime \prime}$ deep or the size shown in the table.

This page left intentionally blank.

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

## Appendix A: Equivalent Spectral Response Acceleration for ICF Walls, $\mathrm{S}_{\mathrm{a}, \mathrm{ICF}}$

Province and Location	$\mathrm{S}_{\text {a,lCF }}$	Province and Location	$\mathrm{S}_{\text {a,lCF }}$
British Columbia		Lytton	0.219
100 Mile House	0.113	Mackenzie	0.117
Abbotsford	0.486	Masset	0.588
Agassiz	0.338	McBride	0.162
Alberni	0.701	McLeod Lake	0.110
Ashcroft	0.160	Merritt	0.175
Bamfield	1.010	Mission City	0.455
Beatton River	0.083	Montrose	0.102
Bella Bella	0.231	Nakusp	0.102
Bella Coola	0.172	Nanaimo	0.719
Burns Lake	0.080	Nelson	0.103
Cache Creek	0.157	Ocean Falls	0.199
Campbell River	0.482	Osoyoos	0.150
Carmi	0.120	Parksville	0.665
Castlegar	0.100	Penticton	0.138
Chetwynd	0.121	Port Alberni	0.721
Chilliwack	0.383	Port Alice	0.950
Comox	0.536	Port Hardy	0.533
Courtenay	0.541	Port McNeill	0.546
Cranbrook	0.138	Port Renfrew	1.010
Crescent Valley	0.101	Powell River	0.464
Crofton	0.781	Prince George	0.089
Dawson Creek	0.098	Prince Rupert	0.264
Dease Lake	0.091	Princeton	0.204
Dog Creek	0.140	Qualicum Beach	0.652
Duncan	0.816	Queen Charlotte City	1.025
Elko	0.174	Quesnel	0.088
Fernie	0.174	Revelstoke	0.109
Fort Nelson	0.103	Salmon Arm	0.104
Fort St. John	0.094	Sandspit	0.868
Glacier	0.142	Sechelt	0.589
Gold River	0.748	Sidney	0.823
Golden	0.170	Smith River	0.370
Grand Forks	0.108	Smithers	0.090
Greenwood	0.113	Sooke	0.928
Hope	0.280	Squamish	0.434
Jordan River	0.980	Stewart	0.132
Kamloops	0.123	Tahsis	0.890
Kaslo	0.109	Taylor	0.093
Kelowna	0.122	Terrace	0.145
Kimberley	0.130	Tofino	1.018
Kitimat Plant	0.167	Trail	0.101
Kitimat Townsite	0.167	Ucluelet	1.033
Ladysmith	0.768	Vancouver Region	
Langford	0.890	Burnaby   (Simon Fraser Univ.)	0.540
Lillooet	0.206		


Province and Location	$\mathrm{S}_{\text {a, ICF }}$
Cloverdale	0.560
Haney	0.491
Ladner	0.642
Langley	0.541
New Westminster	0.561
North Vancouver	0.558
Richmond	0.616
$\begin{aligned} & \text { Surrey (88 Ave \& } 156 \\ & \text { St.) } \end{aligned}$	0.552
Vancouver (City Hall)	0.592
Vancouver   (Granville \& 41 Ave)	0.601
West Vancouver	0.572
Vernon	0.108
Victoria Region	
Victoria   (Gonzales Hts)	0.861
Victoria (Mt Tolmie)	0.853
Victoria	0.868
Whistler	0.315
White Rock	0.601
Williams Lake	0.110
Youbou	0.846
Alberta	
Athabasca	0.043
Banff	0.178
Barrhead	0.064
Beaverlodge	0.102
Brooks	0.076
Calgary	0.126
Campsie	0.067
Camrose	0.058
Canmore	0.177
Cardston	0.196
Claresholm	0.147
Cold Lake	0.034
Coleman	0.189
Coronation	0.048
Cowley	0.191
Drumheller	0.077
Edmonton	0.062
Edson	0.111
Embarras Portage	0.031
Fairview	0.071
Fort MacLeod	0.158
Fort McMurray	0.034
Fort Saskatchewan	0.053


Province and Location	$\mathrm{S}_{\text {a,lCF }}$
Fort Vermilion	0.036
Grande Prairie	0.093
Habay	0.045
Hardisty	0.043
High River	0.134
Hinton	0.175
Jasper	0.183
Alberta	
Keg River	0.042
Lac la Biche	0.038
Lacombe	0.081
Lethbridge	0.125
Manning	0.049
Medicine Hat	0.060
Peace River	0.058
Pincher Creek	0.195
Ranfurly	0.042
Red Deer	0.085
Rocky Mountain House	0.116
Slave Lake	0.047
Stettler	0.066
Stony Plain	0.069
Suffield	0.068
Taber	0.101
Turner Valley	0.160
Valleyview	0.078
Vegreville	0.044
Vermilion	0.038
Wagner	0.048
Wainwright	0.040
Wetaskiwin	0.069
Whitecourt	0.079
Wimborne	0.087
Saskatchewan	
Assiniboia	0.076
Battrum	0.042
Biggar	0.037
Broadview	0.048
Dafoe	0.040
Dundurn	0.039
Estevan	0.073
Hudson Bay	0.034
Humboldt	0.037
Island Falls	0.031
Kamsack	0.037

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Province and Location	$\mathrm{S}_{\mathrm{a,ICF}}$
Kindersley	0.039
Lloydminster	0.036
Maple Creek	0.048
Meadow Lake	0.034
Melfort	0.035
Melville	0.044
Moose Jaw	0.058
Nipawin	0.034
North Battleford	0.036
Prince Albert	0.034
Qu'Appelle	0.054
Regina	0.060
Rosetown	0.038
Saskatoon	0.037
Scott	0.037
Strasbourg	0.046
Swift Current	0.045
Uranium City	0.032
Weyburn	0.105
Yorkton	0.040
Manitoba	
Beausejour	0.033
Boissevain	0.037
Brandon	0.031
Churchill	0.032
Dauphin	0.035
Flin Flon	0.032
Gimli	0.032
Island Lake	0.033
Lac du Bonnet	0.033
Lynn Lake	0.032
Morden	0.031
Neepawa	0.031
Pine Falls	0.033
Portage la Prairie	0.032
Rivers	0.037
Sandilands	0.032
Selkirk	0.032
Split Lake	0.032
Steinbach	0.032
Swan River	0.035
The Pas	0.032
Thompson	0.032
Virden	0.041
Winnipeg	0.032
Ontario	
Ailsa Craig	0.064


Province and Location	$\mathrm{S}_{\text {a,1, }}$
Ajax	0.117
Alexandria	0.267
Alliston	0.076
Almonte	0.173
Armstrong	0.037
Arnprior	0.186
Atikokan	0.039
Attawapiskat	0.043
Aurora	0.087
Bancroft	0.105
Barrie	0.077
Barriefield	0.110
Beaverton	0.082
Belleville	0.105
Belmont	0.073
Kitchenuhmay-koosib (Big Trout Lake)	0.033
CFB Borden	0.075
Bracebridge	0.084
Bradford	0.081
Brampton	0.096
Brantford	0.089
Brighton	0.106
Brockville	0.151
Burk's Falls	0.096
Burlington	0.143
Cambridge	0.084
Campbellford	0.097
Cannington	0.084
Carleton Place	0.164
Cavan	0.092
Centralia	0.064
Chapleau	0.050
Chatham	0.070
Chesley	0.062
Clinton	0.061
Coboconk	0.086
Cobourg	0.106
Cochrane	0.122
Colborne	0.106
Collingwood	0.070
Cornwall	0.266
Corunna	0.060
Deep River	0.192
Deseronto	0.106
Dorchester	0.072
Dorion	0.035
Dresden	0.067


Province and Location	$\mathrm{S}_{\text {a,lcF }}$
Dryden	0.040
Dundalk	0.069
Dunnville	0.127
Durham	0.065
Dutton	0.072
Earlton	0.108
Edison	0.039
Elliot Lake	0.054
Elmvale	0.074
Embro	0.072
Englehart	0.104
Espanola	0.063
Exeter	0.063
Fenelon Falls	0.086
Fergus	0.075
Forest	0.061
Fort Erie	0.162
Fort Erie (Ridgeway)	0.160
Fort Frances	0.036
Gananoque	0.119
Geraldton	0.036
Glencoe	0.068
Goderich	0.059
Gore Bay	0.055
Graham	0.040
Gravenhurst (Muskoka Airport)	0.082
Grimsby	0.158
Guelph	0.082
Guthrie	0.078
Haileybury	0.125
Haldimand (Caledonia)	0.119
Haldimand (Hagersville)	0.097
Haliburton	0.095
Halton Hills (Georgetown)	0.090
Hamilton	0.140
Hanover	0.063
Hastings	0.096
Hawkesbury	0.238
Hearst	0.048
Honey Harbour	0.076
Hornepayne	0.043
Huntsville	0.091
Ingersoll	0.073
Iroquois Falls	0.110
Jellicoe	0.035
Kapuskasing	0.064


Province and Location	$\mathrm{S}_{\text {a,laF }}$
Kemptville	0.209
Kenora	0.036
Killaloe	0.148
Kincardine	0.058
Kingston	0.110
Kinmount	0.089
Kirkland Lake	0.095
Kitchener	0.077
Lakefield	0.091
Lansdowne House	0.035
Leamington	0.070
Lindsay	0.087
Lion's Head	0.062
Listowel	0.066
London	0.070
Lucan	0.065
Maitland	0.159
Markdale	0.066
Markham	0.103
Martin	0.040
Matheson	0.091
Mattawa	0.215
Midland	0.075
Milton	0.107
Milverton	0.067
Minden	0.089
Mississauga	0.121
Mississauga (Lester B. Pearson Int'I Airport)	0.109
Mississauga (Port Credit)	0.134
Mitchell	0.065
Moosonee	0.051
Morrisburg	0.256
Mount Forest	0.067
Nakina	0.036
Nanticoke (Jarvis)	0.090
Nanticoke (Port Dover)	0.085
Napanee	0.106
New Liskeard	0.121
Newcastle	0.107
Newcastle (Bowmanville)	0.107
Newmarket	0.085
Niagara Falls	0.166
North Bay	0.141
Norwood	0.094
Oakville	0.140

[^20]The ICFMA Prescriptive ICF Design for Part 9 Structures in Canada

## LOGIX INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Province and Location	$\mathrm{S}_{\text {a,lCF }}$
Orangeville	0.076
Orillia	0.079
Oshawa	0.108
Ottawa (City Hall)	0.213
Ottawa (Barrhaven)	0.208
Ottawa (Kanata)	0.197
Ottawa   (M-C Int'I Airport)	0.215
Ottawa (Orleans)	0.226
Owen Sound	0.064
Pagwa River	0.040
Paris	0.084
Parkhill	0.063
Parry Sound	0.079
Pelham (Fonthill)	0.162
Pembroke	0.189
Penetanguishene	0.074
Perth	0.140
Petawawa	0.189
Peterborough	0.092
Petrolia	0.062
Pickering (Dunbarton)	0.121
Picton	0.104
Plattsville	0.075
Point Alexander	0.193
Port Burwell	0.079
Port Colborne	0.157
Port Elgin	0.060
Port Hope	0.106
Port Perry	0.091
Port Stanley	0.075
Prescott	0.178
Princeton	0.079
Raith	0.038
Rayside-Balfour (Chelmsford)	0.072
Red Lake	0.038
Renfrew	0.179
Richmond Hill	0.095
Rockland	0.239
Sarnia	0.059
Sault Ste. Marie	0.044
Schreiber	0.035
Seaforth	0.062
Shelburne	0.072
Simcoe	0.084
Sioux Lookout	0.041
Smiths Falls	0.151


Province and Location	$\mathrm{S}_{\text {a,lCF }}$
Smithville	0.156
Smooth Rock Falls	0.112
South River	0.106
Southampton	0.060
St. Catharines	0.165
St. Mary's	0.068
St. Thomas	0.073
Stirling	0.100
Stratford	0.069
Strathroy	0.066
Sturgeon Falls	0.113
Sudbury	0.076
Sundridge	0.103
Tavistock	0.071
Temagami	0.135
Thamesford	0.071
Thedford	0.062
Thunder Bay	0.035
Tillsonburg	0.077
Timmins	0.075
Timmins (Porcupine)	0.081
Etobicoke	0.109
North York	0.110
Scarborough	0.121
Toronto (City Hall)	0.135
Trenton	0.105
Trout Creek	0.116
Uxbridge	0.089
Vaughan (Woodbridge)	0.096
Vittoria	0.083
Walkerton	0.062
Wallaceburg	0.064
Waterloo	0.075
Watford	0.064
Wawa	0.043
Welland	0.161
West Lorne	0.072
Whitby	0.114
Whitby (Brooklin)	0.102
White River	0.041
Wiarton	0.062
Windsor	0.063
Wingham	0.061
Woodstock	0.075
Wyoming	0.061
Quebec	
Acton-Vale	0.155


Province and Location	$\mathrm{S}_{\mathrm{a}, \mathrm{ICF}}$
Alma	0.356
Amos	0.078
Asbestos	0.137
Aylmer	0.203
Baie-Comeau	0.207
Baie-Saint-Paul	0.735
Beauport	0.239
Bedford	0.185
Beloeil	0.244
Brome	0.149
Brossard	0.266
Buckingham	0.232
Campbell's Bay	0.192
Chambly	0.254
Coaticook	0.129
Contrecoeur	0.226
Cowansville	0.161
Deux-Montagnes	0.270
Dolbeau	0.230
Drummondville	0.160
Farnham	0.187
Fort-Coulonge	0.193
Gagnon	0.060
Gaspe	0.090
Gatineau	0.214
Gracefield	0.207
Granby	0.161
Harrington-Harbour	0.056
Havre-St-Pierre	0.127
Hemmingford	0.253
Hull	0.210
Iberville	0.243
Inukjuak	0.040
Joliette	0.219
Kuujjuaq	0.054
Kuujjuarapik	0.035
La Pocatiere	0.685
La-Malbaie	0.785
La-Tuque	0.137
Lac-Megantic	0.130
Lachute	0.242
Lennoxville	0.129
Lery	0.273
Loretteville	0.236
Louiseville	0.184
Magog	0.133
Malartic	0.092


Province and Location	$\mathrm{S}_{\text {a,lCF }}$
Maniwaki	0.208
Masson	0.235
Matane	0.218
Mont-Joli	0.208
Mont-Laurier	0.204
Montmagny	0.278
Montreal Region	
Beaconsfield	0.273
Dorval	0.272
Laval	0.270
Montreal (City Hall)	0.270
Montreal-Est	0.266
Montreal-Nord	0.269
Outremont	0.271
Pierrefonds	0.272
St-Lambert	0.268
St-Laurent	0.271
Ste-Anne-de-Bellevue	0.273
Verdun	0.270
Nicolet (Gentilly)	0.183
Nitchequon	0.047
Noranda	0.088
Perce	0.084
Pincourt	0.273
Plessisville	0.155
Port-Cartier	0.167
Puvirnituq	0.061
Quebec City Region	
Ancienne-Lorette	0.231
Levis	0.233
Quebec	0.233
Sillery	0.230
Ste-Foy	0.231
Richmond	0.140
Rimouski	0.200
Riviere-du-Loup	0.526
Roberval	0.312
Rock-Island	0.133
Rosemere	0.268
Rouyn	0.089
Saguenay	0.359
Saguenay (Bagotville)	0.363
Saguenay (Jonquiere)	0.362
Saguenay (Kenogami)	0.362
Saint-Eustache	0.269
Saint-Jean-surRichelieu	0.244
Salaberry-de-Valleyfield	0.273

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING



Province and Location	$\mathbf{S}_{\text {a,lCF }}$
Grand Bank	0.090
Grand Falls	0.064
Happy Valley - Goose   Bay	0.050
Labrador City	0.052
St. Anthony	0.057
St. John's	0.073
Stephenville	0.064
Twin Falls	0.047
Wabana	0.072
Wabush	0.052



The ICFMA Prescriptive ICF Design for Part 9 Structures in Canada

This page left intentionally blank.

## Appendix B: Climatic Design Data

Province and Location	$\begin{array}{\|c} \text { Elev., } \\ \mathrm{m} \end{array}$	Design Temperature				De-greeDays Below $18^{\circ} \mathrm{C}$	15   Min.   Rain,   mm	One Day Rain, $1 / 50$, mm	Ann.   Rain,   mm	Moist. Index	Ann.   Tot. Ppn., mm	Driving Rain Wind Pressures, Pa, 1/5	Snow Load,   kPa, 1/50		Hourly Wind Pressures, kPa	
		January		July $2.5 \%$												
		$\left\lvert\, \begin{gathered} 2.5 \% \\ { }^{\circ} \mathrm{C} \end{gathered}\right.$	$\begin{aligned} & \text { 1\% } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Dry } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{\|l\|l} \hline \text { Wet } \\ { }^{\circ} \mathrm{C} \end{array}$								$\mathrm{S}_{\mathrm{s}}$	$\mathrm{S}_{\mathrm{r}}$	1/10	1/50
British Columbia																
100 Mile House	1040	-30	-32	29	17	5030	10	48	300	0.44	425	60	2.6	0.3	0.27	0.35
Abbotsford	70	-8	-10	29	20	2860	12	112	1525	1.59	1600	160	2.0	0.3	0.34	0.44
Agassiz	15	-9	-11	31	21	2750	8	128	1650	1.71	1700	160	2.4	0.7	0.36	0.47
Alberni	12	-5	-8	31	19	3100	10	144	1900	2.00	2000	220	2.6	0.4	0.25	0.32
Ashcroft	305	-24	-27	34	20	3700	10	37	250	0.25	300	80	1.7	0.1	0.29	0.38
Bamfield	20	-2	-4	23	17	3080	13	170	2870	2.96	2890	280	1.0	0.4	0.39	0.50
Beatton River	840	-37	-39	26	18	6300	15	64	330	0.53	450	80	3.3	0.1	0.23	0.30
Bella Bella	25	-5	-7	23	18	3180	13	145	2715	2.82	2800	350	2.6	0.8	0.39	0.50
Bella Coola	40	-14	-18	27	19	3560	10	140	1500	1.85	1700	350	4.5	0.8	0.30	0.39
Burns Lake	755	-31	-34	26	17	5450	12	54	300	0.56	450	100	3.4	0.2	0.30	0.39
Cache Creek	455	-24	-27	34	20	3700	10	37	250	0.25	300	80	1.7	0.2	0.30	0.39
Campbell River	20	-5	-7	26	18	3000	10	116	1500	1.59	1600	260	2.8	0.4	0.40	0.52
Carmi	845	-24	-26	31	19	4750	10	64	325	0.38	550	60	3.6	0.2	0.29	0.38
Castlegar	430	-18	-20	32	20	3580	10	54	560	0.64	700	60	4.2	0.1	0.27	0.34
Chetwynd	605	-35	-38	27	18	5500	15	70	400	0.58	625	60	2.4	0.2	0.31	0.40
Chilliwack	10	-9	-11	30	20	2780	8	139	1625	1.68	1700	160	2.2	0.3	0.36	0.47
Comox	15	-7	-9	27	18	3100	10	106	1175	1.28	1200	260	2.4	0.4	0.40	0.52
Courtenay	10	-7	-9	28	18	3100	10	106	1400	1.49	1450	260	2.4	0.4	0.40	0.52
Cranbrook	910	-26	-28	32	18	4400	12	59	275	0.30	400	100	3.0	0.2	0.25	0.33
Crescent Valley	585	-18	-20	31	20	3650	10	54	675	0.75	850	80	4.2	0.1	0.25	0.33
Crotton	5	-4	-6	28	19	2880	8	86	925	1.06	950	160	1.8	0.2	0.31	0.40
Dawson Creek	665	-38	-40	27	18	5900	18	75	325	0.49	475	100	2.5	0.2	0.31	0.40
Dease Lake	800	-37	-40	24	15	6730	10	45	265	0.55	425	380	2.8	0.1	0.23	0.30
Dog Creek	450	-28	-30	29	17	4800	10	48	275	0.41	375	100	1.8	0.2	0.27	0.35
Duncan	10	-6	-8	28	19	2980	8	103	1000	1.13	1050	180	1.8	0.4	0.30	0.39
Elko	1065	-28	-31	30	19	4600	13	64	440	0.48	650	100	3.6	0.2	0.31	0.40
Fernie	1010	-27	-30	30	19	4750	13	118	860	0.88	1175	100	4.5	0.2	0.31	0.40
Fort Nelson	465	-39	-42	28	18	6710	15	70	325	0.56	450	80	2.4	0.1	0.23	0.30
Fort St. John	685	-35	-37	26	18	5750	15	72	320	0.50	475	100	2.8	0.1	0.30	0.39
Glacier	1145	-27	-30	27	17	5800	10	70	625	0.83	1500	80	9.4	0.2	0.25	0.32
Gold River	120	-8	-11	31	18	3230	13	200	2730	2.80	2850	250	2.8	0.6	0.25	0.32
Golden	790	-27	-30	30	17	4750	10	55	325	0.57	500	100	3.7	0.2	0.27	0.35
Grand Forks	565	-19	-22	34	20	3820	10	48	390	0.47	475	80	2.8	0.1	0.31	0.40
Greenwood	745	-20	-23	34	20	4100	10	64	430	0.51	550	80	3.6	0.1	0.31	0.40
Hope	40	-13	-15	31	20	3000	8	139	1825	1.88	1900	140	2.8	0.7	0.48	0.63
Jordan River	20	-1	-3	22	17	2900	12	170	2300	2.37	2370	250	1.2	0.4	0.43	0.55
Kamloops	355	-23	-25	34	20	3450	13	42	225	0.23	275	80	1.8	0.2	0.31	0.40
Kaslo	545	-17	-20	30	19	3830	10	55	660	0.82	850	80	2.8	0.1	0.24	0.31

[^21]| Province and Location | Elev., m | Design Temperature |  |  |  | De-greeDays Below $18^{\circ} \mathrm{C}$ | 15 <br> Min. <br> Rain, <br> mm | One Day Rain, 1/50, mm | Ann. Rain, mm | Moist. Index | Ann. <br> Tot. <br> Ppn., <br> mm | Driving Rain Wind Pressures, $\mathrm{Pa}, 1 / 5$ | Snow Load, kPa, 1/50 |  | Hourly Wind Pressures, kPa |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | January |  | July 2.5\% |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $\begin{gathered} 2.5 \% \\ { }^{\circ} \mathrm{C} \end{gathered}$ | $\begin{aligned} & 1 \% \\ & { }^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \text { Dry } \\ & { }^{\circ} \mathrm{C} \end{aligned}$ | Wet ${ }^{\circ} \mathrm{C}$ |  |  |  |  |  |  |  | $\mathrm{S}_{\mathrm{s}}$ | $\mathrm{S}_{\mathrm{r}}$ | 1/10 | 1/50 |
| Kelowna | 350 | -17 | -20 | 33 | 20 | 3400 | 12 | 43 | 260 | 0.29 | 325 | 80 | 1.7 | 0.1 | 0.31 | 0.40 |
| Kimberley | 1090 | -25 | -27 | 31 | 18 | 4650 | 12 | 59 | 350 | 0.38 | 500 | 100 | 3.0 | 0.2 | 0.25 | 0.33 |
| Kitimat Plant | 15 | -16 | -18 | 25 | 16 | 3750 | 13 | 193 | 2100 | 2.19 | 2500 | 220 | 5.5 | 0.8 | 0.37 | 0.48 |
| Kitimat Townsite | 130 | -16 | -18 | 24 | 16 | 3900 | 13 | 171 | 1900 | 2.00 | 2300 | 220 | 6.5 | 0.8 | 0.37 | 0.48 |
| Ladysmith | 80 | -7 | -9 | 27 | 19 | 3000 | 8 | 97 | 1075 | 1.20 | 1160 | 180 | 2.4 | 0.4 | 0.31 | 0.40 |
| Langford | 80 | -4 | -6 | 27 | 19 | 2750 | 9 | 135 | 1095 | 1.22 | 1125 | 220 | 1.8 | 0.3 | 0.31 | 0.40 |
| Lillooet | 245 | -21 | -23 | 34 | 20 | 3400 | 10 | 70 | 300 | 0.31 | 350 | 100 | 2.1 | 0.1 | 0.34 | 0.44 |
| Lytton | 325 | -17 | -20 | 35 | 20 | 3300 | 10 | 70 | 330 | 0.33 | 425 | 80 | 2.8 | 0.3 | 0.33 | 0.43 |
| Mackenzie | 765 | -34 | -38 | 27 | 17 | 5550 | 10 | 50 | 350 | 0.54 | 650 | 60 | 5.1 | 0.2 | 0.25 | 0.32 |
| Masset | 10 | -5 | -7 | 17 | 15 | 3700 | 13 | 80 | 1350 | 1.54 | 1400 | 400 | 1.8 | 0.4 | 0.48 | 0.61 |
| McBride | 730 | -29 | -32 | 29 | 18 | 4980 | 13 | 54 | 475 | 0.64 | 650 | 60 | 4.3 | 0.2 | 0.27 | 0.35 |
| McLeod Lake | 695 | -35 | -37 | 27 | 17 | 5450 | 10 | 50 | 350 | 0.54 | 650 | 60 | 4.1 | 0.2 | 0.25 | 0.32 |
| Merritt | 570 | -24 | -27 | 34 | 20 | 3900 | 8 | 54 | 240 | 0.24 | 310 | 80 | 1.8 | 0.3 | 0.34 | 0.44 |
| Mission City | 45 | -9 | -11 | 30 | 20 | 2850 | 13 | 123 | 1650 | 1.71 | 1700 | 160 | 2.4 | 0.3 | 0.33 | 0.43 |
| Montrose | 615 | -16 | -18 | 32 | 20 | 3600 | 10 | 54 | 480 | 0.56 | 700 | 60 | 4.1 | 0.1 | 0.27 | 0.35 |
| Nakusp | 445 | -20 | -22 | 31 | 20 | 3560 | 10 | 60 | 650 | 0.78 | 850 | 60 | 4.4 | 0.1 | 0.25 | 0.33 |
| Nanaimo | 15 | -6 | -8 | 27 | 19 | 3000 | 10 | 91 | 1000 | 1.13 | 1050 | 200 | 2.1 | 0.4 | 0.39 | 0.50 |
| Nelson | 600 | -18 | -20 | 31 | 20 | 3500 | 10 | 59 | 460 | 0.57 | 700 | 60 | 4.2 | 0.1 | 0.25 | 0.33 |
| Ocean Falls | 10 | -10 | -12 | 23 | 17 | 3400 | 13 | 260 | 4150 | 4.21 | 4300 | 350 | 3.9 | 0.8 | 0.46 | 0.59 |
| Osoyoos | 285 | -14 | -17 | 35 | 21 | 3100 | 10 | 48 | 275 | 0.28 | 310 | 60 | 1.1 | 0.1 | 0.31 | 0.40 |
| Parksville | 40 | -6 | -8 | 26 | 19 | 3200 | 10 | 91 | 1200 | 1.31 | 1250 | 200 | 2.0 | 0.4 | 0.39 | 0.50 |
| Penticton | 350 | -15 | -17 | 33 | 20 | 3350 | 10 | 48 | 275 | 0.28 | 300 | 60 | 1.3 | 0.1 | 0.35 | 0.45 |
| Port Alberni | 15 | -5 | -8 | 31 | 19 | 3100 | 10 | 161 | 1900 | 2.00 | 2000 | 240 | 2.6 | 0.4 | 0.25 | 0.32 |
| Port Alice | 25 | -3 | -6 | 26 | 17 | 3010 | 13 | 200 | 3300 | 3.38 | 3340 | 220 | 1.1 | 0.4 | 0.25 | 0.32 |
| Port Hardy | 5 | -5 | -7 | 20 | 16 | 3440 | 13 | 150 | 1775 | 1.92 | 1850 | 220 | 0.9 | 0.4 | 0.40 | 0.52 |
| Port McNeill | 5 | -5 | -7 | 22 | 17 | 3410 | 13 | 128 | 1750 | 1.89 | 1850 | 260 | 1.1 | 0.4 | 0.40 | 0.52 |
| Port Renfrew | 20 | -3 | -5 | 24 | 17 | 2900 | 13 | 200 | 3600 | 3.64 | 3675 | 270 | 1.1 | 0.4 | 0.40 | 0.52 |
| Powell River | 10 | -7 | -9 | 26 | 18 | 3100 | 10 | 80 | 1150 | 1.27 | 1200 | 220 | 1.7 | 0.4 | 0.39 | 0.51 |
| Prince George | 580 | -32 | -36 | 28 | 18 | 4720 | 15 | 54 | 425 | 0.58 | 600 | 80 | 3.4 | 0.2 | 0.29 | 0.37 |
| Prince Rupert | 20 | -13 | -15 | 19 | 15 | 3900 | 13 | 160 | 2750 | 2.84 | 2900 | 240 | 1.9 | 0.4 | 0.42 | 0.54 |
| Princeton | 655 | -24 | -29 | 33 | 19 | 4250 | 10 | 43 | 235 | 0.35 | 350 | 80 | 2.9 | 0.6 | 0.28 | 0.36 |
| Qualicum Beach | 10 | -7 | -9 | 27 | 19 | 3200 | 10 | 96 | 1200 | 1.31 | 1250 | 200 | 2.0 | 0.4 | 0.41 | 0.53 |
| Queen Charlotte City | 35 | -6 | -8 | 21 | 16 | 3520 | 13 | 110 | 1300 | 1.47 | 1350 | 360 | 1.8 | 0.4 | 0.48 | 0.61 |
| Quesnel | 475 | -31 | -33 | 30 | 17 | 4650 | 10 | 50 | 380 | 0.51 | 525 | 80 | 3.0 | 0.1 | 0.24 | 0.31 |
| Revelstoke | 440 | -20 | -23 | 31 | 19 | 4000 | 13 | 55 | 625 | 0.80 | 950 | 80 | 7.2 | 0.1 | 0.25 | 0.32 |
| Salmon Arm | 425 | -19 | -24 | 33 | 21 | 3650 | 13 | 48 | 400 | 0.47 | 525 | 80 | 3.5 | 0.1 | 0.30 | 0.39 |
| Sandspit | 5 | -4 | -6 | 18 | 15 | 3450 | 13 | 86 | 1300 | 1.47 | 1350 | 500 | 1.8 | 0.4 | 0.60 | 0.78 |
| Sechelt | 25 | -6 | -8 | 27 | 20 | 2680 | 10 | 75 | 1140 | 1.27 | 1200 | 160 | 1.8 | 0.4 | 0.37 | 0.48 |
| Sidney | 10 | -4 | -6 | 26 | 18 | 2850 | 8 | 96 | 825 | 0.97 | 850 | 160 | 1.1 | 0.2 | 0.33 | 0.42 |
| Smith River | 660 | -45 | -47 | 26 | 17 | 7100 | 10 | 64 | 300 | 0.58 | 500 | 40 | 2.8 | 0.1 | 0.23 | 0.30 |

Council, National R. National Building Code 2015. National Research Council.

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Province and Location	$\begin{gathered} \text { Elev., } \\ \mathrm{m} \end{gathered}$	Design Temperature				De-greeDays Below $18^{\circ} \mathrm{C}$	15   Min.   Rain,   mm	One   Day   Rain,   1/50,   mm	Ann. Rain, mm	Moist. Index	Ann.   Tot.   Ppn.,   mm	Driving Rain Wind Pressures, $\mathrm{Pa}, 1 / 5$	Snow Load, kPa, 1/50		Hourly Wind Pressures, kPa	
		January		July 2.5\%												
		$\begin{aligned} & 2.5 \% \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1 \% \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Dry } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	Wet ${ }^{\circ} \mathrm{C}$								$\mathrm{S}_{\mathrm{s}}$	$\mathrm{S}_{\mathrm{r}}$	1/10	1/50
Smithers	500	-29	-31	26	17	5040	13	60	325	0.60	500	120	3.5	0.2	0.31	0.40
Sooke	20	-1	-3	21	16	2900	9	130	1250	1.37	1280	220	1.3	0.3	0.37	0.48
Squamish	5	-9	-11	29	20	2950	10	140	2050	2.12	2200	160	2.8	0.7	0.39	0.50
Stewart	10	-17	-20	25	16	4350	13	135	1300	1.47	1900	180	7.9	0.8	0.28	0.36
Tahsis	25	-4	-6	26	18	3150	13	200	3845	3.91	3900	300	1.1	0.4	0.26	0.34
Taylor	515	-35	-37	26	18	5720	15	72	320	0.49	450	100	2.3	0.1	0.31	0.40
Terrace	60	-19	-21	27	17	4150	13	120	950	1.08	1150	200	5.4	0.6	0.28	0.36
Tofino	10	-2	-4	20	16	3150	13	193	3275	3.36	3300	300	1.1	0.4	0.53	0.68
Trail	440	-14	-17	33	20	3600	10	54	580	0.65	700	60	4.1	0.1	0.27	0.35
Ucluelet	5	-2	-4	18	16	3120	13	180	3175	3.26	3200	280	1.0	0.4	0.53	0.68
Vancouver Region																
Burnaby (Simon Fraser Univ.)	330	-7	-9	25	17	3100	10	150	1850	1.93	1950	160	2.9	0.7	0.36	0.47
Cloverdale	10	-8	-10	29	20	2700	10	112	1350	1.44	1400	160	2.5	0.2	0.34	0.44
Haney	10	-9	-11	30	20	2840	10	134	1800	1.86	1950	160	2.4	0.2	0.34	0.44
Ladner	3	-6	-8	27	19	2600	10	80	1000	1.14	1050	160	1.3	0.2	0.36	0.46
Langley	15	-8	-10	29	20	2700	10	112	1450	1.53	1500	160	2.4	0.2	0.34	0.44
New Westminster	10	-8	-10	29	19	2800	10	134	1500	1.59	1575	160	2.3	0.2	0.34	0.44
North Vancouver	135	-7	-9	26	19	2910	12	150	2000	2.07	2100	160	3.0	0.3	0.35	0.45
Richmond	5	-7	-9	27	19	2800	10	86	1070	1.20	1100	160	1.5	0.2	0.35	0.45
Surrey (88 Ave \& 156 St.)	90	-8	-10	29	20	2750	10	128	1500	1.58	1575	160	2.4	0.3	0.34	0.44
Vancouver (City Hall)	40	-7	-9	28	20	2825	10	112	1325	1.44	1400	160	1.8	0.2	0.35	0.45
Vancouver   (Granville \& 41 Ave)	120	-6	-8	28	20	2925	10	107	1325	1.44	1400	160	1.9	0.3	0.35	0.45
West Vancouver	45	-7	-9	28	19	2950	12	150	1600	1.69	1700	160	2.4	0.2	0.37	0.48
Vernon	405	-20	-23	33	20	3600	13	43	350	0.41	400	80	2.2	0.1	0.31	0.40
Victoria Region																
Victoria   (Gonzales Hts)	65	-4	-6	24	17	2700	9	91	600	0.82	625	220	1.5	0.3	0.44	0.57
Victoria (Mt Tolmie)	125	-6	-8	24	16	2700	9	91	775	0.96	800	220	2.1	0.3	0.48	0.63
Victoria	10	-4	-6	24	17	2650	8	91	800	0.98	825	220	1.1	0.2	0.44	0.57
Whistler	665	-17	-20	30	20	4180	10	85	845	0.99	1215	160	9.5	0.9	0.25	0.32
White Rock	30	-5	-7	25	20	2620	10	80	1065	1.17	1100	160	2.0	0.2	0.34	0.44
Williams Lake	615	-30	-33	29	17	4400	10	48	350	0.47	425	80	2.4	0.2	0.27	0.35
Youbou	200	-5	-8	31	19	3050	10	161	2000	2.09	2100	200	3.5	0.7	0.25	0.32
Alberta																
Athabasca	515	-35	-38	27	19	6000	18	86	370	0.58	480	80	1.5	0.1	0.28	0.36
Banff	1400	-31	-33	27	16	5500	18	65	300	0.58	500	120	3.3	0.1	0.25	0.32
Barrhead	645	-33	-36	27	19	5740	20	86	375	0.58	475	100	1.7	0.1	0.34	0.44


Province and Location	$\begin{array}{\|c} \text { Elev., } \\ \mathrm{m} \end{array}$	Design Temperature				De-greeDays Below $18^{\circ} \mathrm{C}$	15   Min.   Rain,   mm	One   Day   Rain,   1/50,   mm	Ann.   Rain,   mm	Moist. Index	Ann. Tot. Ppn., mm	Driving Rain Wind Pressures, $\mathrm{Pa}, 1 / 5$	Snow Load, kPa, 1/50		Hourly Wind Pressures, kPa	
		January		July 2.5\%												
		$\begin{gathered} 2.5 \% \\ { }^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 1 \% \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Dry } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Wet } \\ & { }^{\circ} \mathrm{C} \end{aligned}$								$\mathrm{S}_{\mathrm{s}}$	$\mathrm{S}_{\mathrm{r}}$	1/10	1/50
Beaverlodge	730	-36	-39	28	18	5700	20	86	315	0.49	470	100	2.4	0.1	0.28	0.36
Brooks	760	-32	-34	32	20	4880	18	86	260	0.26	340	220	1.2	0.1	0.40	0.52
Calgary	1045	-30	-32	28	17	5000	23	103	325	0.37	425	220	1.1	0.1	0.37	0.48
Campsie	660	-33	-36	27	19	5750	20	86	375	0.58	475	100	1.7	0.1	0.34	0.44
Camrose	740	-33	-35	29	19	5500	20	86	355	0.54	470	160	2.0	0.1	0.30	0.39
Canmore	1320	-31	-33	28	17	5400	18	86	325	0.57	500	120	3.2	0.1	0.29	0.37
Cardston	1130	-29	-32	30	19	4700	20	108	340	0.38	550	140	1.5	0.1	0.56	0.72
Claresholm	1030	-30	-32	30	18	4680	15	97	310	0.35	440	200	1.3	0.1	0.45	0.58
Cold Lake	540	-35	-38	28	19	5860	18	81	320	0.53	430	140	1.7	0.1	0.29	0.38
Coleman	1320	-31	-34	29	18	5210	15	86	400	0.46	550	120	2.7	0.3	0.48	0.63
Coronation	790	-32	-34	30	19	5640	20	92	300	0.45	400	200	1.9	0.1	0.29	0.37
Cowley	1175	-29	-32	29	18	4810	15	92	310	0.36	525	140	1.6	0.1	0.78	1.01
Drumheller	685	-32	-34	30	18	5050	20	86	300	0.39	375	220	1.2	0.1	0.34	0.44
Edmonton	645	-30	-33	28	19	5120	23	97	360	0.48	460	160	1.7	0.1	0.35	0.45
Edson	920	-34	-37	27	18	5750	18	81	450	0.63	570	100	2.1	0.1	0.36	0.46
Embarras Portage	220	-41	-43	28	19	7100	12	81	250	0.56	390	80	2.2	0.1	0.29	0.37
Fairview	670	-37	-40	27	18	5840	15	86	330	0.51	450	100	2.4	0.1	0.27	0.35
Fort MacLeod	945	-30	-32	31	19	4600	16	97	300	0.35	425	180	1.2	0.1	0.53	0.68
Fort McMurray	255	-38	-40	28	19	6250	13	86	340	0.52	460	60	1.5	0.1	0.27	0.35
Fort Saskatchewan	610	-32	-35	28	19	5420	20	86	350	0.49	425	140	1.6	0.1	0.33	0.43
Fort Vermilion	270	-41	-43	28	18	6700	13	70	250	0.53	380	60	2.1	0.1	0.23	0.30
Grande Prairie	650	-36	-39	27	18	5790	20	86	315	0.49	450	120	2.2	0.1	0.33	0.43
Habay	335	-41	-43	28	18	6750	13	70	275	0.54	425	60	2.4	0.1	0.23	0.30
Hardisty	615	-33	-36	30	19	5640	20	81	325	0.48	425	140	1.7	0.1	0.28	0.36
High River	1040	-31	-32	28	17	4900	18	97	300	0.36	425	200	1.3	0.1	0.50	0.65
Hinton	990	-34	-38	27	17	5500	13	81	375	0.55	500	100	2.6	0.1	0.36	0.46
Jasper	1060	-31	-34	28	17	5300	12	76	300	0.52	400	80	3.0	0.1	0.25	0.32
Keg River	420	-40	-42	28	18	6520	13	70	310	0.54	450	80	2.4	0.1	0.23	0.30
Lac la Biche	560	-35	-38	28	19	6100	15	86	375	0.58	475	80	1.6	0.1	0.28	0.36
Lacombe	855	-33	-36	28	19	5500	23	92	350	0.53	450	180	1.9	0.1	0.31	0.40
Lethbridge	910	-30	-32	31	19	4500	20	97	250	0.26	390	200	1.2	0.1	0.51	0.66
Manning	465	-39	-41	27	18	6300	13	76	280	0.49	390	80	2.3	0.1	0.23	0.30
Medicine Hat	705	-31	-34	32	19	4540	23	92	250	0.25	325	220	1.1	0.1	0.37	0.48
Peace River	330	-37	-40	27	18	6050	15	81	300	0.50	390	100	2.2	0.1	0.25	0.32
Pincher Creek	1130	-29	-32	29	18	4740	16	103	325	0.37	575	140	1.5	0.1	0.75	0.96
Ranfurly	670	-34	-37	29	19	5700	18	92	325	0.50	420	100	1.9	0.1	0.28	0.36
Red Deer	855	-32	-35	28	19	5550	20	97	375	0.54	475	200	1.8	0.1	0.31	0.40
Rocky Mountain House	985	-32	-34	27	18	5640	20	92	425	0.59	550	120	1.9	0.1	0.28	0.36
Slave Lake	590	-35	-38	26	19	5850	15	81	380	0.62	500	80	1.9	0.1	0.29	0.37
Stettler	820	-32	-34	30	19	5300	20	97	370	0.53	450	200	1.9	0.1	0.28	0.36

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

6.0 - CANADIAN PRESCRIPTIVE ENGINEERING


Province and Location	$\begin{gathered} \text { Elev., } \\ \mathrm{m} \end{gathered}$	Design Temperature				De-greeDays Below $18^{\circ} \mathrm{C}$	15   Min.   Rain,   mm	One   Day   Rain,   1/50,   mm	Ann.   Rain,   mm	Moist. Index	Ann.   Tot.   Ppn.,   mm	Driv-   ing Rain Wind Pressures, Pa, 1/5	Snow Load, kPa, 1/50		Hourly Wind Pressures, kPa	
		January		July 2.5\%												
		$\left\|\begin{array}{c} 2.5 \% \\ { }^{\circ} \mathrm{C} \end{array}\right\|$	$\begin{aligned} & 1 \% \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Dry } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	Wet								$\mathrm{S}_{\mathrm{s}}$	$\mathrm{S}_{\mathrm{r}}$	1/10	1/50
Swift Current	750	-31	-34	31	20	5150	25	81	260	0.34	350	240	1.4	0.1	0.42	0.54
Uranium City	265	-42	-44	26	19	7500	12	54	300	0.59	360	100	2.0	0.1	0.28	0.36
Weyburn	575	-33	-35	31	23	5400	28	97	320	0.40	400	200	1.8	0.1	0.37	0.48
Yorkton	510	-34	-37	29	21	6000	23	97	350	0.54	440	140	1.9	0.1	0.31	0.40
Manitoba																
Beausejour	245	-33	-35	29	23	5680	28	103	430	0.61	530	180	2.0	0.2	0.32	0.41
Boissevain	510	-32	-34	30	23	5500	28	119	390	0.54	510	180	2.2	0.2	0.40	0.52
Brandon	395	-33	-35	30	22	5760	28	108	375	0.56	460	180	2.1	0.2	0.38	0.49
Churchill	10	-38	-40	25	18	8950	12	76	265	0.82	410	260	3.0	0.2	0.43	0.55
Dauphin	295	-33	-35	30	22	5900	28	103	400	0.56	490	160	1.9	0.2	0.31	0.40
Flin Flon	300	-38	-40	27	20	6440	18	81	340	0.59	475	80	2.2	0.2	0.27	0.35
Gimli	220	-34	-36	29	23	5800	28	108	410	0.65	530	180	1.9	0.2	0.31	0.40
Island Lake	240	-36	-38	27	20	6900	18	86	380	0.67	550	80	2.6	0.2	0.29	0.37
Lac du Bonnet	260	-34	-36	29	23	5730	28	103	445	0.65	560	180	1.9	0.2	0.29	0.37
Lynn Lake	350	-40	-42	27	19	7770	18	86	310	0.62	490	100	2.4	0.2	0.29	0.37
Morden	300	-31	-33	30	24	5400	28	119	420	0.55	520	180	2.2	0.2	0.40	0.52
Neepawa	365	-32	-34	29	23	5760	28	108	410	0.58	470	180	2.2	0.2	0.34	0.44
Pine Falls	220	-34	-36	28	23	5900	25	97	440	0.66	420	180	1.9	0.2	0.30	0.39
Portage la Prairie	260	-31	-33	30	23	5600	28	108	390	0.51	525	180	2.1	0.2	0.36	0.46
Rivers	465	-34	-36	29	23	5840	28	108	370	0.56	460	180	2.1	0.2	0.36	0.46
Sandilands	365	-32	-34	29	23	5650	28	113	460	0.58	550	180	2.2	0.2	0.31	0.40
Selkirk	225	-33	-35	29	23	5700	28	108	420	0.61	500	180	1.9	0.2	0.32	0.41
Split Lake	175	-38	-40	27	19	7900	18	76	325	0.66	500	120	2.5	0.2	0.30	0.39
Steinbach	270	-33	-35	29	23	5700	28	108	440	0.58	500	180	2.0	0.2	0.31	0.40
Swan River	335	-34	-37	29	22	6100	20	92	370	0.58	500	120	2.0	0.2	0.27	0.35
The Pas	270	-36	-38	28	21	6480	18	81	330	0.59	450	160	2.2	0.2	0.29	0.37
Thompson	205	-40	-43	27	19	7600	18	86	350	0.64	540	100	2.4	0.2	0.28	0.36
Virden	435	-33	-35	30	23	5620	28	108	350	0.53	460	180	2.0	0.2	0.36	0.46
Winnipeg	235	-33	-35	30	23	5670	28	108	415	0.58	500	180	1.9	0.2	0.35	0.45
Ontario																
Ailsa Craig	230	-17	-19	30	23	3840	25	103	800	0.93	950	180	2.2	0.4	0.39	0.50
Ajax	95	-20	-22	30	23	3820	23	92	760	0.90	825	160	1.0	0.4	0.37	0.48
Alexandria	80	-24	-26	30	23	4600	25	103	800	0.91	975	160	2.4	0.4	0.31	0.40
Alliston	220	-23	-25	29	23	4200	28	113	690	0.81	875	120	2.0	0.4	0.28	0.36
Almonte	120	-26	-28	30	23	4620	25	97	730	0.84	800	140	2.5	0.4	0.32	0.41
Armstrong	340	-37	-40	28	21	6500	23	97	525	0.75	725	100	2.7	0.4	0.23	0.30
Arnprior	85	-27	-29	30	23	4680	23	86	630	0.76	775	140	2.5	0.4	0.29	0.37
Atikokan	400	-33	-35	29	22	5750	25	103	570	0.77	760	100	2.4	0.3	0.23	0.30
Attawapiskat	10	-37	-39	28	21	7100	18	81	450	0.79	650	160	2.8	0.3	0.32	0.41
Aurora	270	-21	-23	30	23	4210	28	108	700	0.81	800	140	2.0	0.4	0.34	0.44

Council, National R. National Building Code 2015. National Research Council.

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Province and Location	$\begin{array}{\|c} \text { Elev., } \\ \mathrm{m} \end{array}$	Design Temperature				De-greeDays Below $18^{\circ} \mathrm{C}$	15   Min.   Rain,   mm	One   Day   Rain,   1/50,   mm	Ann. Rain, mm	Moist. Index	Ann. Tot. Ppn., mm	Driving Rain Wind Pressures, $\mathrm{Pa}, 1 / 5$	Snow Load, kPa, 1/50		Hourly Wind Pressures, kPa	
		January		July 2.5\%												
		$\left.\begin{gathered} 2.5 \% \\ { }^{\circ} \mathrm{C} \end{gathered} \right\rvert\,$	$\begin{aligned} & 1 \% \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Dry } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Wet } \\ { }^{\circ} \mathrm{C} \end{array}$								$\mathrm{S}_{\mathrm{s}}$	$\mathrm{S}_{\mathrm{r}}$	1/10	1/50
Bancroft	365	-28	-31	29	23	4740	25	92	720	0.85	900	100	3.1	0.4	0.25	0.32
Barrie	245	-24	-26	29	23	4380	28	97	700	0.83	900	120	2.5	0.4	0.28	0.36
Barriefield	100	-22	-24	28	23	3990	23	108	780	0.96	950	160	2.1	0.4	0.36	0.47
Beaverton	240	-24	-26	30	23	4300	25	108	720	0.87	950	120	2.2	0.4	0.28	0.36
Belleville	90	-22	-24	29	23	3910	23	97	760	0.89	850	180	1.7	0.4	0.33	0.43
Belmont	260	-17	-19	30	24	3840	25	97	850	0.95	950	180	1.7	0.4	0.36	0.47
Kitchenuhmaykoosib (Big Trout Lake)	215	-38	-40	26	20	7450	18	92	400	0.75	600	150	3.2	0.2	0.33	0.42
CFB Borden	225	-23	-25	29	23	4300	28	103	690	0.82	875	120	2.2	0.4	0.28	0.36
Bracebridge	310	-26	-28	29	23	4800	25	103	830	0.95	1050	120	3.1	0.4	0.27	0.35
Bradford	240	-23	-25	30	23	4280	28	108	680	0.80	800	120	2.1	0.4	0.28	0.36
Brampton	215	-19	-21	30	23	4100	28	119	720	0.81	820	140	1.3	0.4	0.34	0.44
Brantford	205	-18	-20	30	23	3900	23	103	780	0.89	850	160	1.3	0.4	0.33	0.42
Brighton	95	-21	-23	29	23	4000	23	94	760	0.90	850	160	1.6	0.4	0.37	0.48
Brockville	85	-23	-25	29	23	4060	25	103	770	0.89	975	180	2.2	0.4	0.34	0.44
Burk's Falls	305	-26	-28	29	22	5020	25	97	810	0.94	1010	120	2.7	0.4	0.27	0.35
Burlington	80	-17	-19	31	23	3740	23	103	770	0.91	850	160	1.1	0.4	0.36	0.46
Cambridge	295	-18	-20	29	23	4100	25	113	800	0.91	890	160	1.6	0.4	0.28	0.36
Campbellford	150	-23	-26	30	23	4280	25	97	730	0.85	850	160	1.7	0.4	0.32	0.41
Cannington	255	-24	-26	30	23	4310	25	108	740	0.85	950	120	2.2	0.4	0.28	0.36
Carleton Place	135	-25	-27	30	23	4600	25	97	730	0.84	850	160	2.5	0.4	0.32	0.41
Cavan	200	-23	-25	30	23	4400	25	97	740	0.86	850	140	2.0	0.4	0.34	0.44
Centralia	260	-17	-19	30	23	3800	25	103	820	0.95	1000	180	2.3	0.4	0.38	0.49
Chapleau	425	-35	-38	27	21	5900	20	97	530	0.72	850	80	3.6	0.4	0.23	0.30
Chatham	180	-16	-18	31	24	3470	28	103	800	0.86	850	180	1.0	0.4	0.33	0.43
Chesley	275	-19	-21	29	22	4320	28	103	810	0.94	1125	140	2.8	0.4	0.37	0.48
Clinton	280	-17	-19	29	23	4150	25	103	810	0.94	1000	160	2.6	0.4	0.38	0.49
Coboconk	270	-25	-27	30	23	4500	25	108	740	0.87	950	120	2.5	0.4	0.27	0.35
Cobourg	90	-21	-23	29	23	3980	23	94	760	0.90	825	160	1.2	0.4	0.38	0.49
Cochrane	245	-34	-36	29	21	6200	20	92	575	0.77	875	80	2.8	0.3	0.27	0.35
Colborne	105	-21	-23	29	23	3980	23	94	760	0.90	850	160	1.6	0.4	0.38	0.49
Collingwood	190	-21	-23	29	23	4180	28	97	720	0.87	950	160	2.7	0.4	0.30	0.39
Cornwall	35	-23	-25	30	23	4250	25	103	780	0.89	960	180	2.2	0.4	0.32	0.41
Corunna	185	-16	-18	31	24	3600	25	100	760	0.87	800	180	1.0	0.4	0.36	0.47
Deep River	145	-29	-32	30	22	4900	23	92	650	0.82	850	100	2.5	0.4	0.27	0.35
Deseronto	85	-22	-24	29	23	4070	23	92	760	0.89	900	160	1.9	0.4	0.33	0.43
Dorchester	260	-18	-20	30	24	3900	28	103	850	0.96	950	180	1.9	0.4	0.36	0.47
Dorion	200	-33	-35	28	21	5950	20	103	550	0.77	725	160	2.8	0.4	0.30	0.39
Dresden	185	-16	-18	31	24	3750	28	97	760	0.84	820	180	1.0	0.4	0.33	0.43
Dryden	370	-34	-36	28	22	5850	25	97	550	0.70	700	120	2.4	0.3	0.23	0.30

[^22]| Province and Location | Elev., m | Design Temperature |  |  |  | De-greeDays Below $18^{\circ} \mathrm{C}$ | 15 <br> Min. <br> Rain, <br> mm | One <br> Day <br> Rain, <br> 1/50, <br> mm | Ann. Rain, mm | Moist. Index | Ann. <br> Tot. <br> Ppn., <br> mm | Driving Rain Wind Pressures, Pa, 1/5 | Snow Load, kPa, 1/50 |  | Hourly Wind Pressures, kPa |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | January |  | July 2.5\% |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $\begin{gathered} 2.5 \% \\ { }^{\circ} \mathrm{C} \end{gathered}$ | $\begin{aligned} & 1 \% \\ & { }^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \text { Dry } \\ & { }^{\circ} \mathrm{C} \end{aligned}$ | Wet ${ }^{\circ} \mathrm{C}$ |  |  |  |  |  |  |  | $\mathrm{S}_{\mathrm{s}}$ | $\mathrm{S}_{\mathrm{r}}$ | 1/10 | 1/50 |
| Dundalk | 525 | -22 | -24 | 29 | 22 | 4700 | 28 | 108 | 750 | 0.89 | 1080 | 150 | 3.2 | 0.4 | 0.33 | 0.42 |
| Dunnville | 175 | -15 | -17 | 30 | 24 | 3660 | 23 | 108 | 830 | 0.95 | 950 | 160 | 2.0 | 0.4 | 0.36 | 0.46 |
| Durham | 340 | -20 | -22 | 29 | 22 | 4340 | 28 | 103 | 815 | 0.94 | 1025 | 140 | 2.8 | 0.4 | 0.34 | 0.44 |
| Dutton | 225 | -16 | -18 | 31 | 24 | 3700 | 28 | 92 | 850 | 0.96 | 925 | 180 | 1.3 | 0.4 | 0.36 | 0.47 |
| Earlton | 245 | -33 | -36 | 29 | 22 | 5730 | 23 | 92 | 560 | 0.75 | 820 | 120 | 3.1 | 0.4 | 0.35 | 0.45 |
| Edison | 365 | -34 | -36 | 28 | 22 | 5740 | 25 | 108 | 510 | 0.65 | 680 | 120 | 2.4 | 0.3 | 0.24 | 0.31 |
| Elliot Lake | 380 | -26 | -28 | 29 | 21 | 4950 | 23 | 108 | 630 | 0.83 | 950 | 160 | 2.9 | 0.4 | 0.29 | 0.38 |
| Elmvale | 220 | -24 | -26 | 29 | 23 | 4200 | 28 | 97 | 720 | 0.87 | 950 | 140 | 2.6 | 0.4 | 0.28 | 0.36 |
| Embro | 310 | -19 | -21 | 30 | 23 | 3950 | 28 | 113 | 830 | 0.94 | 950 | 160 | 2.0 | 0.4 | 0.37 | 0.48 |
| Englehart | 205 | -33 | -36 | 29 | 22 | 5800 | 23 | 92 | 600 | 0.78 | 880 | 100 | 2.8 | 0.4 | 0.32 | 0.41 |
| Espanola | 220 | -25 | -27 | 29 | 21 | 4920 | 23 | 108 | 650 | 0.83 | 840 | 160 | 2.3 | 0.4 | 0.33 | 0.42 |
| Exeter | 265 | -17 | -19 | 30 | 23 | 3900 | 25 | 113 | 810 | 0.94 | 975 | 180 | 2.4 | 0.4 | 0.38 | 0.49 |
| Fenelon Falls | 260 | -25 | -27 | 30 | 23 | 4440 | 25 | 108 | 730 | 0.86 | 950 | 120 | 2.3 | 0.4 | 0.28 | 0.36 |
| Fergus | 400 | -20 | -22 | 29 | 23 | 4300 | 28 | 108 | 760 | 0.87 | 925 | 160 | 2.2 | 0.4 | 0.28 | 0.36 |
| Forest | 215 | -16 | -18 | 31 | 23 | 3740 | 25 | 103 | 810 | 0.95 | 875 | 160 | 2.0 | 0.4 | 0.37 | 0.48 |
| Fort Erie | 180 | -15 | -17 | 30 | 24 | 3650 | 23 | 108 | 860 | 0.98 | 1020 | 160 | 2.3 | 0.4 | 0.36 | 0.46 |
| Fort Erie (Ridgeway) | 190 | -15 | -17 | 30 | 24 | 3600 | 25 | 108 | 860 | 0.98 | 1000 | 160 | 2.3 | 0.4 | 0.36 | 0.46 |
| Fort Frances | 340 | -33 | -35 | 29 | 22 | 5440 | 25 | 108 | 570 | 0.71 | 725 | 120 | 2.3 | 0.3 | 0.24 | 0.31 |
| Gananoque | 80 | -22 | -24 | 28 | 23 | 4010 | 23 | 103 | 760 | 0.91 | 900 | 180 | 2.1 | 0.4 | 0.36 | 0.47 |
| Geraldton | 345 | -36 | -39 | 28 | 21 | 6450 | 20 | 86 | 550 | 0.77 | 725 | 100 | 2.9 | 0.4 | 0.23 | 0.30 |
| Glencoe | 215 | -16 | -18 | 31 | 24 | 3680 | 28 | 103 | 800 | 0.91 | 925 | 180 | 1.5 | 0.4 | 0.33 | 0.43 |
| Goderich | 185 | -16 | -18 | 29 | 23 | 4000 | 25 | 92 | 810 | 0.95 | 950 | 180 | 2.4 | 0.4 | 0.43 | 0.55 |
| Gore Bay | 205 | -24 | -26 | 28 | 22 | 4700 | 23 | 92 | 640 | 0.84 | 860 | 160 | 2.6 | 0.4 | 0.34 | 0.44 |
| Graham | 495 | -35 | -37 | 29 | 22 | 5940 | 23 | 97 | 570 | 0.75 | 750 | 140 | 2.6 | 0.3 | 0.23 | 0.30 |
| Gravenhurst (Muskoka Airport) | 255 | -26 | -28 | 29 | 23 | 4760 | 25 | 103 | 790 | 0.92 | 1050 | 120 | 2.7 | 0.4 | 0.28 | 0.36 |
| Grimsby | 85 | -16 | -18 | 30 | 23 | 3520 | 23 | 108 | 760 | 0.90 | 875 | 160 | 0.9 | 0.4 | 0.36 | 0.46 |
| Guelph | 340 | -19 | -21 | 29 | 23 | 4270 | 28 | 103 | 770 | 0.88 | 875 | 140 | 1.9 | 0.4 | 0.28 | 0.36 |
| Guthrie | 280 | -24 | -26 | 29 | 23 | 4300 | 28 | 103 | 700 | 0.83 | 950 | 120 | 2.5 | 0.4 | 0.28 | 0.36 |
| Haileybury | 210 | -32 | -35 | 30 | 22 | 5600 | 23 | 92 | 590 | 0.77 | 820 | 120 | 2.4 | 0.4 | 0.34 | 0.44 |
| Haldimand (Caledonia) | 190 | -18 | -20 | 30 | 23 | 3750 | 23 | 108 | 810 | 0.93 | 875 | 160 | 1.2 | 0.4 | 0.34 | 0.44 |
| Haldimand (Hagersville) | 215 | -17 | -19 | 30 | 23 | 3760 | 25 | 97 | 840 | 0.95 | 875 | 160 | 1.3 | 0.4 | 0.36 | 0.46 |
| Haliburton | 335 | -27 | -29 | 29 | 23 | 4840 | 25 | 92 | 780 | 0.90 | 980 | 100 | 2.9 | 0.4 | 0.27 | 0.35 |
| Halton Hills (Georgetown) | 255 | -19 | -21 | 30 | 23 | 4200 | 28 | 119 | 750 | 0.84 | 850 | 140 | 1.4 | 0.4 | 0.29 | 0.37 |
| Hamilton | 90 | -17 | -19 | 31 | 23 | 3460 | 23 | 108 | 810 | 0.90 | 875 | 160 | 1.1 | 0.4 | 0.36 | 0.46 |
| Hanover | 270 | -19 | -21 | 29 | 22 | 4300 | 28 | 103 | 790 | 0.92 | 1050 | 140 | 2.6 | 0.4 | 0.37 | 0.48 |
| Hastings | 200 | -24 | -26 | 30 | 23 | 4280 | 25 | 92 | 730 | 0.85 | 840 | 140 | 2.0 | 0.4 | 0.32 | 0.41 |
| Hawkesbury | 50 | -25 | -27 | 30 | 23 | 4610 | 23 | 103 | 800 | 0.91 | 925 | 160 | 2.3 | 0.4 | 0.32 | 0.41 |
| Hearst | 245 | -35 | -37 | 29 | 21 | 6450 | 20 | 86 | 520 | 0.74 | 825 | 80 | 2.8 | 0.3 | 0.23 | 0.30 |

Council, National R. National Building Code 2015. National Research Council.

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Province and Location	$\left.\begin{gathered} \text { Elev., } \\ \mathrm{m} \end{gathered} \right\rvert\,$	Design Temperature				De-greeDays Below $18^{\circ} \mathrm{C}$	15   Min.   Rain,   mm	One   Day   Rain,   1/50,   mm	Ann. Rain, mm	Moist. Index	Ann. Tot. Ppn., mm	Driving Rain Wind Pressures, Pa, 1/5	Snow Load, kPa, $1 / 50$		Hourly Wind Pressures, kPa	
		January		July 2.5\%												
		$\left\lvert\, \begin{aligned} & 2.5 \% \\ & { }^{\circ} \mathrm{C} \end{aligned}\right.$	$\begin{aligned} & 1 \% \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Dry } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	Wet ${ }^{\circ} \mathrm{C}$								$\mathrm{S}_{\mathrm{s}}$	$\mathrm{S}_{\mathrm{r}}$	1/10	1/50
Mount Forest	420	-21	-24	28	22	4700	28	103	740	0.87	940	140	2.7	0.4	0.32	0.41
Nakina	325	-36	-38	28	21	6500	20	86	540	0.76	750	100	2.8	0.4	0.23	0.30
Nanticoke (Jarvis)	205	-17	-18	30	23	3700	28	108	840	0.95	900	160	1.4	0.4	0.37	0.48
Nanticoke (Port Dover)	180	-15	-17	30	24	3600	25	108	860	0.98	950	140	1.2	0.4	0.37	0.48
Napanee	90	-22	-24	29	23	4140	23	92	770	0.90	900	160	1.9	0.4	0.33	0.43
New Liskeard	180	-32	-35	30	22	5570	23	92	570	0.75	810	100	2.6	0.4	0.33	0.43
Newcastle	115	-20	-22	30	23	3990	23	86	760	0.90	830	160	1.5	0.4	0.37	0.48
Newcastle (Bowmanville)	95	-20	-22	30	23	4000	23	86	760	0.90	830	160	1.4	0.4	0.37	0.48
Newmarket	185	-22	-24	30	23	4260	28	108	700	0.81	800	140	2.0	0.4	0.29	0.38
Niagara Falls	210	-16	-18	30	23	3600	23	96	810	0.94	950	160	1.8	0.4	0.33	0.43
North Bay	210	-28	-30	28	22	5150	25	95	775	0.93	975	120	2.2	0.4	0.27	0.34
Norwood	225	-24	-26	30	23	4320	25	92	720	0.84	850	120	2.1	0.4	0.32	0.41
Oakville	90	-18	-20	30	23	3760	23	97	750	0.90	850	160	1.1	0.4	0.36	0.47
Orangeville	430	-21	-23	29	23	4450	28	108	730	0.84	875	140	2.3	0.4	0.28	0.36
Orillia	230	-25	-27	29	23	4260	25	103	740	0.88	1000	120	2.4	0.4	0.28	0.36
Oshawa	110	-19	-21	30	23	3860	23	86	760	0.90	875	160	1.4	0.4	0.37	0.48
Ottawa (Metropolitan)																
Ottawa (City Hall)	70	-25	-27	30	23	4440	23	86	750	0.84	900	160	2.4	0.4	0.32	0.41
Ottawa (Barrhaven)	98	-25	-27	30	23	4500	25	92	750	0.84	900	160	2.4	0.4	0.32	0.41
Ottawa (Kanata)	98	-25	-27	30	23	4520	25	92	730	0.84	900	160	2.5	0.4	0.32	0.41
Ottawa (M-C Int'l Airport)	125	-25	-27	30	23	4500	24	89	750	0.84	900	160	2.4	0.4	0.32	0.41
Ottawa (Orleans)	70	-26	-28	30	23	4500	23	91	750	0.84	900	160	2.4	0.4	0.32	0.41
Owen Sound	215	-19	-21	29	22	4030	28	113	760	0.90	1075	160	2.8	0.4	0.37	0.48
Pagwa River	185	-35	-37	28	21	6500	20	86	540	0.76	825	80	2.7	0.4	0.23	0.30
Paris	245	-18	-20	30	23	4000	23	96	790	0.90	925	160	1.4	0.4	0.33	0.42
Parkhill	205	-16	-18	31	23	3800	25	103	800	0.93	925	180	2.1	0.4	0.39	0.50
Parry Sound	215	-24	-26	28	22	4640	23	97	820	0.95	1050	160	2.8	0.4	0.30	0.39
Pelham (Fonthill)	230	-15	-17	30	23	3690	23	96	820	0.94	950	160	2.1	0.4	0.33	0.42
Pembroke	125	-28	-31	30	23	4980	23	105	640	0.80	825	100	2.5	0.4	0.27	0.35
Penetanguishene	220	-24	-26	29	23	4200	25	97	720	0.87	1050	160	2.8	0.4	0.30	0.39
Perth	130	-25	-27	30	23	4540	25	92	730	0.84	900	140	2.3	0.4	0.32	0.41
Petawawa	135	-29	-31	30	23	4980	23	92	640	0.80	825	100	2.6	0.4	0.27	0.35
Peterborough	200	-23	-25	30	23	4400	25	92	710	0.83	840	140	2.0	0.4	0.32	0.41
Petrolia	195	-16	-18	31	24	3640	25	108	810	0.89	920	180	1.3	0.4	0.36	0.47
Pickering (Dunbarton)	85	-19	-21	30	23	3800	23	92	730	0.88	825	140	1.0	0.4	0.37	0.48
Picton	95	-21	-23	29	23	3980	23	92	770	0.91	940	160	2.0	0.4	0.38	0.49
Plattsville	300	-19	-21	29	23	4150	28	103	820	0.93	950	140	1.9	0.4	0.33	0.42
Point Alexander	150	-29	-32	30	22	4960	23	92	650	0.82	850	100	2.5	0.4	0.27	0.35
Port Burwell	195	-15	-17	30	24	3800	25	92	930	1.05	1000	180	1.2	0.4	0.36	0.47

Council, National R. National Building Code 2015. National Research Council.

Province and Location	$\begin{gathered} \text { Elev., } \\ \mathrm{m} \end{gathered}$	Design Temperature				De-greeDays Below $18^{\circ} \mathrm{C}$	15   Min.   Rain,   mm	One   Day   Rain,   1/50,   mm	Ann. Rain, mm	Moist. Index	Ann.   Tot.   Ppn.,   mm	Driving Rain Wind Pressures, $\mathrm{Pa}, 1 / 5$	Snow Load, kPa, 1/50		Hourly Wind Pressures, kPa	
		January		July 2.5\%												
		$\begin{gathered} 2.5 \% \\ { }^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 1 \% \\ & { }^{\circ} \mathrm{C} \end{aligned}$	Dry ${ }^{\circ} \mathrm{C}$	Wet ${ }^{\circ} \mathrm{C}$								$\mathrm{S}_{\mathrm{s}}$	$\mathrm{S}_{\mathrm{r}}$	1/10	1/50
Port Colborne	180	-15	-17	30	24	3600	23	108	850	0.97	1000	160	2.1	0.4	0.36	0.46
Port Elgin	205	-17	-19	28	22	4100	25	92	790	0.94	850	180	2.8	0.4	0.43	0.55
Port Hope	100	-21	-23	29	23	3970	23	94	760	0.90	825	180	1.2	0.4	0.37	0.48
Port Perry	270	-22	-24	30	23	4260	25	97	720	0.84	850	140	2.4	0.4	0.34	0.44
Port Stanley	180	-15	-17	31	24	3850	25	92	940	1.05	975	180	1.2	0.4	0.36	0.47
Prescott	90	-23	-25	29	23	4120	25	103	770	0.88	975	180	2.2	0.4	0.34	0.44
Princeton	280	-18	-20	30	23	4000	25	97	810	0.92	925	160	1.5	0.4	0.33	0.42
Raith	475	-34	-37	28	22	5900	23	97	570	0.75	750	120	2.7	0.4	0.23	0.30
Rayside-Balfour   (Chelmsford)	270	-28	-30	29	21	5200	25	92	650	0.80	850	180	2.5	0.4	0.35	0.45
Red Lake	360	-35	-37	28	21	6220	20	92	470	0.69	630	120	2.6	0.3	0.23	0.30
Renfrew	115	-27	-30	30	23	4900	23	97	620	0.75	810	140	2.5	0.4	0.27	0.35
Richmond Hill	230	-21	-23	31	24	4000	25	97	740	0.83	850	140	1.5	0.4	0.34	0.44
Rockland	50	-26	-28	30	23	4600	23	92	780	0.89	950	160	2.4	0.4	0.31	0.40
Sarnia	190	-16	-18	31	24	3750	25	100	750	0.87	825	180	1.1	0.4	0.36	0.47
Sault Ste. Marie	190	-25	-28	29	22	4960	23	97	660	0.89	950	200	3.1	0.4	0.34	0.44
Schreiber	310	-34	-36	27	21	5960	20	103	600	0.82	850	160	3.3	0.4	0.30	0.39
Seaforth	310	-17	-19	30	23	4100	25	108	810	0.94	1025	160	2.5	0.4	0.37	0.48
Shelburne	495	-22	-24	29	23	4700	28	108	740	0.88	900	150	3.1	0.4	0.31	0.40
Simcoe	210	-17	-19	30	24	3700	28	113	860	0.97	950	160	1.3	0.4	0.35	0.45
Sioux Lookout	375	-34	-36	28	22	5950	25	97	520	0.69	710	100	2.6	0.3	0.23	0.30
Smiths Falls	130	-25	-27	30	23	4540	25	92	730	0.84	850	140	2.3	0.4	0.32	0.41
Smithville	185	-16	-18	30	23	3650	23	108	800	0.92	900	160	1.5	0.4	0.33	0.42
Smooth Rock Falls	235	-34	-36	29	21	6250	20	92	560	0.77	850	80	2.7	0.3	0.25	0.32
South River	355	-27	-29	29	22	5090	25	103	830	0.96	975	120	2.8	0.4	0.27	0.35
Southampton	180	-17	-19	28	22	4100	25	92	800	0.95	830	180	2.7	0.4	0.41	0.53
St. Catharines	105	-16	-18	30	23	3540	23	92	770	0.90	850	160	1.0	0.4	0.36	0.46
St. Mary's	310	-18	-20	30	23	4000	28	108	820	0.95	1025	160	2.2	0.4	0.36	0.47
St. Thomas	225	-16	-18	31	24	3780	25	103	900	0.99	975	180	1.4	0.4	0.36	0.47
Stirling	120	-23	-25	30	23	4220	25	97	740	0.86	850	120	1.7	0.4	0.31	0.40
Stratford	360	-18	-20	29	23	4050	28	113	820	0.95	1050	160	2.3	0.4	0.35	0.45
Strathroy	225	-17	-19	31	24	3780	25	103	770	0.88	950	180	1.9	0.4	0.36	0.47
Sturgeon Falls	205	-28	-30	29	21	5200	25	95	700	0.86	910	140	2.4	0.4	0.27	0.35
Sudbury	275	-28	-30	29	21	5180	25	97	650	0.79	875	200	2.5	0.4	0.36	0.46
Sundridge	340	-27	-29	29	22	5080	25	97	840	0.97	975	120	2.8	0.4	0.27	0.35
Tavistock	340	-19	-21	29	23	4100	28	113	820	0.95	1010	160	2.1	0.4	0.35	0.45
Temagami	300	-30	-33	30	22	5420	23	92	650	0.82	875	120	2.6	0.4	0.29	0.37
Thamesford	280	-19	-21	30	23	3950	28	108	820	0.93	975	160	1.9	0.4	0.37	0.48
Thedford	205	-16	-18	31	23	3710	25	103	810	0.95	900	180	2.1	0.4	0.39	0.50
Thunder Bay	210	-31	-33	29	21	5650	23	108	560	0.76	710	160	2.9	0.4	0.30	0.39

[^23]| Province and Location | $\begin{array}{\|c} \text { Elev., } \\ \mathrm{m} \end{array}$ | Design Temperature |  |  |  | De-greeDays Below $18^{\circ} \mathrm{C}$ | 15 <br> Min. <br> Rain, mm | One <br> Day <br> Rain, <br> 1/50, <br> mm | Ann. Rain, mm | Moist. Index | Ann. Tot. Ppn., mm | Driving Rain Wind Pressures, Pa, 1/5 | Snow Load, kPa, 1/50 |  | Hourly Wind Pressures, kPa |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | January |  | July 2.5\% |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $\begin{aligned} & 2.5 \% \\ & { }^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & 1 \% \\ & { }^{\circ} \mathrm{C} \end{aligned}$ | Dry | Wet ${ }^{\circ} \mathrm{C}$ |  |  |  |  |  |  |  | $\mathrm{S}_{\mathrm{s}}$ | $\mathrm{S}_{\mathrm{r}}$ | 1/10 | 1/50 |
| Tillsonburg | 215 | -17 | -19 | 30 | 24 | 3840 | 25 | 103 | 880 | 0.98 | 980 | 160 | 1.3 | 0.4 | 0.34 | 0.44 |
| Timmins | 300 | -34 | -36 | 29 | 21 | 5940 | 20 | 108 | 560 | 0.75 | 875 | 100 | 3.1 | 0.3 | 0.27 | 0.35 |
| Timmins (Porcupine) | 295 | -34 | -36 | 29 | 21 | 6000 | 20 | 103 | 560 | 0.75 | 875 | 100 | 2.9 | 0.3 | 0.29 | 0.37 |
| Toronto Metropolitan Region |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Etobicoke | 160 | -20 | -22 | 31 | 24 | 3800 | 26 | 108 | 720 | 0.80 | 800 | 160 | 1.1 | 0.4 | 0.34 | 0.44 |
| North York | 175 | -20 | -22 | 31 | 24 | 3760 | 25 | 108 | 730 | 0.82 | 850 | 150 | 1.2 | 0.4 | 0.34 | 0.44 |
| Scarborough | 180 | -20 | -22 | 31 | 24 | 3800 | 25 | 92 | 730 | 0.87 | 825 | 160 | 1.2 | 0.4 | 0.36 | 0.47 |
| Toronto (City Hall) | 90 | -18 | -20 | 31 | 23 | 3520 | 25 | 97 | 720 | 0.86 | 820 | 160 | 0.9 | 0.4 | 0.34 | 0.44 |
| Trenton | 80 | -22 | -24 | 29 | 23 | 4110 | 23 | 97 | 760 | 0.89 | 850 | 160 | 1.6 | 0.4 | 0.36 | 0.47 |
| Trout Creek | 330 | -27 | -29 | 29 | 22 | 5100 | 25 | 103 | 780 | 0.92 | 975 | 120 | 2.7 | 0.4 | 0.27 | 0.35 |
| Uxbridge | 275 | -22 | -24 | 30 | 23 | 4240 | 25 | 103 | 700 | 0.82 | 850 | 140 | 2.4 | 0.4 | 0.33 | 0.42 |
| Vaughan (Woodbridge) | 165 | -20 | -22 | 31 | 24 | 4100 | 26 | 113 | 700 | 0.80 | 800 | 140 | 1.1 | 0.4 | 0.34 | 0.44 |
| Vittoria | 215 | -15 | -17 | 30 | 24 | 3680 | 25 | 113 | 880 | 0.99 | 950 | 160 | 1.3 | 0.4 | 0.36 | 0.47 |
| Walkerton | 275 | -18 | -20 | 30 | 22 | 4300 | 28 | 103 | 790 | 0.92 | 1025 | 160 | 2.7 | 0.4 | 0.39 | 0.50 |
| Wallaceburg | 180 | -16 | -18 | 31 | 24 | 3600 | 28 | 97 | 760 | 0.87 | 825 | 180 | 0.9 | 0.4 | 0.35 | 0.45 |
| Waterloo | 330 | -19 | -21 | 29 | 23 | 4200 | 28 | 119 | 780 | 0.89 | 925 | 160 | 2.0 | 0.4 | 0.29 | 0.37 |
| Watford | 240 | -17 | -19 | 31 | 24 | 3740 | 25 | 108 | 790 | 0.90 | 950 | 160 | 1.9 | 0.4 | 0.36 | 0.47 |
| Wawa | 290 | -34 | -36 | 26 | 21 | 5840 | 20 | 93 | 725 | 0.93 | 950 | 160 | 3.4 | 0.4 | 0.30 | 0.39 |
| Welland | 180 | -15 | -17 | 30 | 23 | 3670 | 23 | 103 | 840 | 0.96 | 975 | 160 | 2.0 | 0.4 | 0.33 | 0.43 |
| West Lorne | 215 | -16 | -18 | 31 | 24 | 3700 | 28 | 103 | 840 | 0.95 | 900 | 180 | 1.3 | 0.4 | 0.36 | 0.47 |
| Whitby | 85 | -20 | -22 | 30 | 23 | 3820 | 23 | 86 | 760 | 0.90 | 850 | 160 | 1.2 | 0.4 | 0.37 | 0.48 |
| Whitby (Brooklin) | 160 | -20 | -22 | 30 | 23 | 4010 | 23 | 86 | 770 | 0.91 | 850 | 140 | 1.9 | 0.4 | 0.35 | 0.45 |
| White River | 375 | -39 | -42 | 28 | 21 | 6150 | 20 | 92 | 575 | 0.80 | 825 | 100 | 3.6 | 0.4 | 0.23 | 0.30 |
| Wiarton | 185 | -19 | -21 | 29 | 22 | 4300 | 25 | 103 | 740 | 0.91 | 1000 | 180 | 2.7 | 0.4 | 0.37 | 0.48 |
| Windsor | 185 | -16 | -18 | 32 | 24 | 3400 | 28 | 103 | 800 | 0.85 | 900 | 180 | 0.8 | 0.4 | 0.36 | 0.47 |
| Wingham | 310 | -18 | -20 | 30 | 23 | 4220 | 28 | 108 | 780 | 0.91 | 1050 | 160 | 2.6 | 0.4 | 0.39 | 0.50 |
| Woodstock | 300 | -19 | -21 | 30 | 23 | 3910 | 28 | 113 | 830 | 0.94 | 930 | 160 | 1.9 | 0.4 | 0.34 | 0.44 |
| Wyoming | 215 | -16 | -18 | 31 | 24 | 3700 | 25 | 103 | 815 | 0.92 | 900 | 180 | 1.6 | 0.4 | 0.36 | 0.47 |
| Quebec |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Acton-Vale | 95 | -24 | -27 | 30 | 23 | 4620 | 21 | 107 | 860 | 0.97 | 1050 | 180 | 2.3 | 0.4 | 0.27 | 0.35 |
| Alma | 110 | -31 | -33 | 28 | 22 | 5800 | 20 | 91 | 700 | 0.86 | 950 | 160 | 3.3 | 0.4 | 0.27 | 0.35 |
| Amos | 295 | -34 | -36 | 28 | 21 | 6160 | 20 | 91 | 670 | 0.85 | 920 | 100 | 3.2 | 0.3 | 0.25 | 0.32 |
| Asbestos | 245 | -26 | -28 | 29 | 22 | 4800 | 23 | 96 | 870 | 0.98 | 1050 | 160 | 2.8 | 0.6 | 0.27 | 0.35 |
| Aylmer | 90 | -25 | -28 | 30 | 23 | 4520 | 23 | 91 | 730 | 0.84 | 900 | 160 | 2.5 | 0.4 | 0.32 | 0.41 |
| Baie-Comeau | 60 | -27 | -29 | 25 | 19 | 6020 | 16 | 91 | 680 | 0.96 | 1000 | 220 | 4.3 | 0.4 | 0.39 | 0.50 |
| Baie-Saint-Paul | 20 | -27 | -29 | 28 | 21 | 5280 | 18 | 102 | 730 | 0.89 | 1000 | 180 | 3.4 | 0.6 | 0.37 | 0.48 |
| Beauport | 45 | -26 | -29 | 28 | 22 | 5100 | 20 | 107 | 980 | 1.09 | 1200 | 200 | 3.4 | 0.6 | 0.33 | 0.42 |
| Bedford | 55 | -24 | -26 | 29 | 23 | 4420 | 23 | 91 | 880 | 0.99 | 1260 | 160 | 2.1 | 0.4 | 0.32 | 0.41 |
| Beloeil | 25 | -24 | -26 | 30 | 23 | 4500 | 23 | 91 | 840 | 0.95 | 1025 | 180 | 2.4 | 0.4 | 0.29 | 0.37 |

[^24]
## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Province and Location	$\begin{gathered} \text { Elev., } \\ \mathrm{m} \end{gathered}$	Design Temperature				De-greeDays Below $18^{\circ} \mathrm{C}$	15   Min.   Rain,   mm	One   Day   Rain,   1/50,   mm	Ann.   Rain, mm	Moist. Index	Ann.   Tot.   Ppn., mm	Driving Rain Wind Pressures, Pa, 1/5	Snow Load, kPa, 1/50		Hourly Wind Pressures, kPa	
		January		July 2.5\%												
		$\left\lvert\, \begin{gathered} 2.5 \% \\ { }^{\circ} \mathrm{C} \end{gathered}\right.$	$\begin{aligned} & 1 \% \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Dry } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Wet } \\ { }^{\circ} \mathrm{C} \end{array}$								$\mathrm{S}_{\text {s }}$	$\mathrm{S}_{\mathrm{r}}$	1/10	1/50
Matane	5	-24	-26	24	20	5510	18	91	640	0.88	1050	220	3.7	0.4	0.47	0.60
Mont-Joli	90	-24	-26	26	21	5370	18	91	610	0.84	920	220	4.1	0.4	0.40	0.52
Mont-Laurier	225	-29	-32	29	22	5320	24	102	790	0.93	1000	160	2.6	0.4	0.23	0.30
Montmagny	10	-25	-28	28	22	5090	20	102	880	1.01	1090	180	2.9	0.6	0.36	0.47
Montréal Region																
Beaconsfield	25	-24	-26	30	23	4440	23	91	780	0.89	950	180	2.3	0.4	0.33	0.42
Dorval	25	-24	-26	30	23	4400	23	91	760	0.85	940	180	2.4	0.4	0.33	0.42
Laval	35	-24	-26	29	23	4500	23	96	830	0.93	1025	160	2.6	0.4	0.33	0.42
Montréal (City Hall)	20	-23	-26	30	23	4200	23	96	830	0.93	1025	180	2.6	0.4	0.33	0.42
Montréal-Est	25	-23	-26	30	23	4470	23	96	830	0.93	1025	180	2.7	0.4	0.33	0.42
Montréal-Nord	20	-24	-26	30	23	4470	23	96	830	0.93	1025	160	2.6	0.4	0.33	0.42
Outremont	105	-23	-26	30	23	4300	23	96	820	0.91	1025	180	2.8	0.4	0.33	0.42
Pierrefonds	25	-24	-26	30	23	4430	23	96	800	0.90	960	180	2.4	0.4	0.33	0.42
St-Lambert	15	-23	-26	30	23	4400	23	96	810	0.91	1050	160	2.5	0.4	0.33	0.42
St-Laurent	45	-23	-26	30	23	4270	23	96	790	0.89	950	160	2.5	0.4	0.33	0.42
Ste-Anne-deBellevue	35	-24	-26	29	23	4460	23	96	780	0.89	960	180	2.3	0.4	0.33	0.42
Verdun	20	-23	-26	30	23	4200	23	91	780	0.88	1025	180	2.5	0.4	0.33	0.42
Nicolet (Gentilly)	15	-25	-28	29	23	4900	20	107	860	0.98	1025	160	2.8	0.4	0.33	0.42
Nitchequon	545	-39	-41	23	19	8100	15	70	500	0.89	825	140	3.5	0.3	0.29	0.37
Noranda	305	-33	-36	29	21	6050	20	91	650	0.82	875	100	3.2	0.3	0.27	0.35
Percé	5	-21	-24	25	19	5400	16	107	1000	1.18	1300	300	3.8	0.6	0.56	0.72
Pincourt	25	-24	-26	29	23	4480	23	96	780	0.88	950	180	2.3	0.4	0.33	0.42
Plessisville	145	-26	-28	29	23	5100	21	107	890	1.00	1150	180	2.8	0.6	0.27	0.35
Port-Cartier	20	-28	-30	25	19	6060	15	106	730	0.99	1125	300	4.1	0.4	0.42	0.54
Puvirnituq	5	-36	-38	23	16	9200	7	54	210	0.87	375	240	4.5	0.2	0.47	0.60
Québec City Region																
AncienneLorette	35	-25	-28	28	23	5130	20	102	940	1.06	1200	200	3.4	0.6	0.32	0.41
Lévis	50	-25	-28	28	22	5050	20	107	920	1.04	1200	160	3.3	0.6	0.32	0.41
Québec	120	-25	-28	28	22	5080	20	107	925	1.04	1210	200	3.6	0.6	0.32	0.41
Sillery	10	-25	-28	28	23	5070	20	107	930	1.05	1200	200	3.1	0.6	0.32	0.41
Ste-Foy	115	-25	-28	28	23	5100	20	107	940	1.06	1200	180	3.7	0.6	0.32	0.41
Richmond	150	-25	-27	29	22	4700	23	96	870	0.98	1060	160	2.4	0.6	0.25	0.32
Rimouski	30	-25	-27	26	20	5300	18	91	640	0.84	890	200	3.8	0.4	0.40	0.52
Rivière-du-Loup	55	-25	-27	26	21	5380	18	91	660	0.84	900	180	3.5	0.6	0.39	0.50
Roberval	100	-31	-33	28	21	5750	22	91	590	0.77	910	140	3.5	0.3	0.27	0.35
Rock-Island	160	-25	-27	29	23	4850	23	91	900	1.03	1125	160	2.0	0.4	0.27	0.35
Rosemère	25	-24	-26	29	23	4550	23	96	840	0.97	1050	160	2.6	0.4	0.31	0.40
Rouyn	300	-33	-36	29	21	6050	20	91	650	0.82	900	100	3.1	0.3	0.27	0.35
Saguenay	10	-30	-32	28	22	5700	18	86	710	0.88	975	140	2.7	0.4	0.28	0.36

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Province and Location	$\begin{array}{\|c} \text { Elev., } \\ \mathrm{m} \end{array}$	Design Temperature				De-greeDays Below $18^{\circ} \mathrm{C}$	15   Min.   Rain,   mm	One   Day   Rain,   1/50,   mm	Ann. Rain, mm	Moist. Index	Ann. Tot. Ppn., mm	Driving Rain Wind Pressures, Pa, $1 / 5$	Snow Load, kPa, 1/50		Hourly Wind Pressures, kPa	
		January		July 2.5\%												
		$\left\lvert\, \begin{gathered} 2.5 \% \\ { }^{\circ} \mathrm{C} \end{gathered}\right.$	$\begin{aligned} & 1 \% \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Dry } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{\|l} \text { Wet } \\ { }^{\circ} \mathrm{C} \end{array}$								$\mathrm{S}_{\mathrm{s}}$	$\mathrm{S}_{\mathrm{r}}$	1/10	1/50
Saguenay (Bagotville)	5	-31	-33	28	21	5700	18	86	690	0.86	925	160	2.7	0.4	0.29	0.38
Saguenay (Jonquière)	135	-30	-32	28	22	5650	18	86	710	0.87	925	160	3.1	0.4	0.27	0.35
Saguenay (Kenogami)	140	-30	-32	28	22	5650	18	86	690	0.86	925	160	3.1	0.4	0.27	0.35
Saint-Eustache	35	-25	-27	29	23	4500	23	96	820	0.92	1025	160	2.4	0.4	0.29	0.37
Saint-Jean-sur-   Richelieu	35	-24	-26	29	23	4450	23	91	880	0.99	1010	180	2.2	0.4	0.32	0.41
Salaberry-deValleyfield	50	-23	-25	29	23	4400	23	96	760	0.87	900	180	2.3	0.4	0.33	0.42
Schefferville	550	-37	-39	24	16	8550	13	64	410	0.81	800	180	4.5	0.3	0.33	0.42
Senneterre	310	-34	-36	29	21	6180	22	91	740	0.91	925	100	3.3	0.3	0.25	0.32
Sept-Illes	5	-29	-31	24	18	6200	15	106	760	1.01	1125	300	4.1	0.4	0.42	0.54
Shawinigan	60	-26	-29	29	23	5050	22	102	820	0.96	1050	180	3.1	0.4	0.27	0.35
Shawville	170	-27	-30	30	23	4880	23	96	670	0.79	880	160	2.8	0.4	0.27	0.35
Sherbrooke	185	-28	-30	29	23	4700	23	96	900	1.03	1100	160	2.2	0.6	0.25	0.32
Sorel	10	-25	-27	29	23	4550	20	102	800	0.93	975	180	2.8	0.4	0.33	0.43
St-Félicien	105	-32	-34	28	22	5850	22	91	570	0.76	900	140	3.5	0.3	0.27	0.35
St-Georges-deCacouna	35	-25	-27	26	21	5400	18	91	660	0.85	925	180	3.2	0.6	0.39	0.50
St-Hubert	25	-24	-26	30	23	4490	23	91	820	0.92	1020	180	2.5	0.4	0.33	0.42
Saint-Hubert-de-Rivière-du-Loup	310	-26	-28	26	21	5520	22	91	740	0.90	1025	180	4.4	0.6	0.31	0.40
St-Hyacinthe	35	-24	-27	30	23	4500	21	91	840	0.95	1030	160	2.3	0.4	0.27	0.35
St-Jérôme	95	-26	-28	29	23	4820	23	96	830	0.97	1025	160	2.7	0.4	0.29	0.37
St-Jovite	230	-29	-31	28	22	5250	23	96	810	0.99	1025	160	2.8	0.4	0.25	0.33
St-Lazare-Hudson	60	-24	-26	30	23	4520	23	96	750	0.85	950	180	2.3	0.4	0.33	0.42
St-Nicolas	65	-25	-28	28	22	4990	20	102	890	1.01	1200	200	3.5	0.6	0.33	0.42
Ste-Agathe-desMonts	360	-28	-30	28	22	5390	23	96	820	1.00	1170	140	3.4	0.4	0.27	0.35
Sutton	185	-25	-27	29	23	4600	23	96	990	1.09	1260	160	2.4	0.4	0.32	0.41
Tadoussac	65	-26	-28	27	21	5450	18	96	700	0.88	1000	180	3.7	0.4	0.40	0.52
Témiscaming	240	-30	-32	30	22	5020	23	96	730	0.88	940	100	2.5	0.4	0.25	0.32
Terrebonne	20	-25	-27	29	23	4500	23	96	830	0.93	1025	160	2.6	0.4	0.31	0.40
Thetford Mines	330	-26	-28	28	22	5120	22	107	950	1.06	1230	160	3.5	0.6	0.27	0.35
Thurso	50	-26	-28	30	23	4820	23	91	800	0.93	950	160	2.4	0.4	0.31	0.40
Trois-Rivières	25	-25	-28	29	23	4900	20	107	860	0.98	1050	180	2.8	0.4	0.33	0.43
Val-d'Or	310	-33	-36	29	21	6180	20	86	640	0.83	925	100	3.4	0.3	0.25	0.32
Varennes	15	-24	-26	30	23	4500	23	96	810	0.94	1000	160	2.6	0.4	0.31	0.40
Verchères	15	-24	-26	30	23	4450	23	96	810	0.94	1000	160	2.7	0.4	0.33	0.43
Victoriaville	125	-26	-28	29	23	4900	21	102	850	0.97	1100	180	2.6	0.6	0.27	0.35
Ville-Marie	200	-31	-34	30	22	5550	23	96	630	0.80	825	120	2.3	0.4	0.31	0.40
Wakefield	120	-27	-30	30	23	4820	23	91	780	0.91	1020	160	2.4	0.4	0.27	0.34

[^25]
## 6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Province and Location	$\begin{array}{\|c} \text { Elev., } \\ \mathrm{m} \end{array}$	Design Temperature				De-greeDays Below $18^{\circ} \mathrm{C}$	15   Min.   Rain,   mm	One   Day   Rain,   1/50,   mm	Ann.   Rain, mm	Moist. Index	Ann.   Tot.   Ppn.,   mm	Driving Rain Wind Pressures, Pa, $1 / 5$	Snow Load, kPa, 1/50		Hourly Wind Pressures, kPa	
		January		July 2.5\%												
		$\begin{aligned} & 2.5 \% \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1 \% \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Dry } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Wet } \\ { }^{\circ} \mathrm{C} \end{array}$								$\mathrm{S}_{\mathrm{s}}$	$\mathrm{S}_{\mathrm{r}}$	1/10	1/50
Waterloo	205	-25	-27	29	23	4650	23	96	980	1.08	1250	160	2.5	0.4	0.27	0.35
Windsor	150	-25	-27	29	23	4700	23	96	930	1.04	1075	160	2.3	0.4	0.25	0.32
New Brunswick																
Alma	5	-21	-23	26	20	4500	18	144	1175	1.32	1450	260	2.6	0.6	0.37	0.48
Bathurst	10	-23	-26	30	22	5020	20	106	775	0.94	1020	180	4.1	0.6	0.37	0.48
Campbellton	30	-26	-28	29	22	5500	20	107	725	0.93	1025	180	4.3	0.4	0.35	0.45
Edmundston	160	-27	-29	28	22	5320	23	91	750	0.94	1000	160	3.4	0.6	0.29	0.38
Fredericton	15	-24	-27	29	22	4670	22	112	900	1.02	1100	160	3.1	0.6	0.29	0.38
Gagetown	20	-24	-26	29	22	4460	20	112	900	1.04	1125	180	2.8	0.6	0.31	0.40
Grand Falls	115	-27	-30	28	22	5300	23	107	850	1.00	1100	160	3.6	0.6	0.29	0.38
Miramichi	5	-24	-26	30	22	4950	20	96	825	0.97	1050	200	3.4	0.6	0.32	0.41
Moncton	20	-23	-25	28	21	4680	20	112	850	1.02	1175	220	3.0	0.6	0.39	0.50
Oromocto	20	-24	-26	29	22	4650	22	112	900	1.02	1110	160	3.0	0.6	0.30	0.39
Sackville	15	-22	-24	27	21	4590	18	112	975	1.14	1175	220	2.5	0.6	0.38	0.49
Saint Andrews	35	-22	-24	25	20	4680	19	123	1000	1.15	1200	220	2.8	0.6	0.35	0.45
Saint George	35	-21	-23	25	20	4680	18	123	1000	1.15	1200	220	2.8	0.6	0.35	0.45
Saint John	5	-22	-24	25	20	4570	18	139	1100	1.27	1425	260	2.3	0.6	0.41	0.53
Shippagan	5	-22	-24	28	21	4930	18	96	800	0.98	1050	260	3.4	0.6	0.48	0.63
St. Stephen	20	-24	-26	28	22	4700	20	123	1000	1.15	1160	180	2.9	0.6	0.33	0.42
Woodstock	60	-26	-29	30	22	4910	22	107	875	0.99	1100	160	3.1	0.6	0.29	0.37
Nova Scotia																
Amherst	25	-21	-24	27	21	4500	18	118	950	1.12	1150	220	2.4	0.6	0.37	0.48
Antigonish	10	-17	-20	27	21	4510	15	123	1100	1.25	1250	240	2.3	0.6	0.42	0.54
Bridgewater	10	-15	-17	27	20	4140	16	144	1300	1.45	1475	260	1.9	0.6	0.43	0.55
Canso	5	-13	-15	25	20	4400	15	123	1325	1.48	1400	260	1.7	0.6	0.48	0.61
Debert	45	-21	-24	27	21	4500	18	118	1000	1.16	1200	240	2.1	0.6	0.37	0.48
Digby	35	-15	-17	25	20	4020	15	130	1100	1.27	1275	260	2.2	0.6	0.43	0.55
Greenwood (CFB)	28	-18	-20	29	22	4140	16	118	925	1.05	1100	280	2.7	0.6	0.42	0.54
Halifax Region																
Dartmouth	10	-16	-18	26	20	4100	18	144	1250	1.40	1400	280	1.6	0.6	0.45	0.58
Halifax	55	-16	-18	26	20	4000	17	150	1350	1.49	1500	280	1.9	0.6	0.45	0.58
Kentville	25	-18	-20	28	21	4130	17	118	950	1.09	1200	260	2.6	0.6	0.42	0.54
Liverpool	20	-16	-18	27	20	3990	16	150	1325	1.48	1425	280	1.7	0.6	0.48	0.61
Lockeport	5	-14	-16	25	20	4000	18	139	1250	1.42	1450	280	1.4	0.6	0.47	0.60
Louisburg	5	-15	-17	26	20	4530	15	118	1300	1.46	1500	300	2.1	0.7	0.50	0.65
Lunenburg	25	-15	-17	26	20	4140	16	144	1300	1.45	1450	260	1.9	0.6	0.48	0.61
New Glasgow	30	-19	-21	27	21	4320	15	135	975	1.13	1200	260	2.2	0.6	0.43	0.55
North Sydney	20	-16	-19	27	21	4500	15	123	1200	1.36	1475	300	2.4	0.6	0.46	0.59
Pictou	25	-19	-21	27	21	4310	15	107	950	1.11	1175	260	2.2	0.6	0.43	0.55
Port Hawkesbury	40	-17	-19	27	21	4500	15	128	1325	1.48	1450	260	2.1	0.6	0.57	0.74

## LOGIX INSULATED CONCRETE FORMS

6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Province and Location	$\begin{array}{\|c} \text { Elev., } \\ \mathrm{m} \end{array}$	Design Temperature				De-greeDays Below $18^{\circ} \mathrm{C}$	15   Min.   Rain,   mm	One   Day   Rain,   1/50,   mm	Ann. Rain, mm	Moist. Index	Ann. Tot. Ppn., mm	Driving Rain Wind Pressures, $\mathrm{Pa}, 1 / 5$	Snow Load, kPa, 1/50		Hourly Wind Pressures, kPa	
		$\left\lvert\, \begin{aligned} & 2.5 \% \\ & { }^{\circ} \mathrm{C} \end{aligned}\right.$	$\begin{aligned} & 1 \% \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Dry } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Wet } \\ & { }^{\circ} \mathrm{C} \end{aligned}$								$\mathrm{S}_{\text {s }}$	$\mathrm{S}_{\mathrm{r}}$	1/10	1/50
Springhill	185	-20	-23	27	21	4540	18	118	1075	1.22	1175	220	3.1	0.6	0.37	0.48
Stewiacke	25	-20	-22	27	21	4400	18	128	1050	1.20	1250	240	1.8	0.6	0.39	0.50
Sydney	5	-16	-19	27	21	4530	15	123	1200	1.36	1475	300	2.3	0.6	0.46	0.59
Tatamagouche	25	-20	-23	27	21	4380	18	118	875	1.05	1150	260	2.2	0.6	0.43	0.55
Truro	25	-20	-22	27	21	4500	18	118	1000	1.16	1175	240	2.0	0.6	0.37	0.48
Wolfville	35	-19	-21	28	21	4140	17	118	975	1.13	1175	260	2.6	0.6	0.42	0.54
Yarmouth	10	-14	-16	22	19	3990	19	135	1125	1.32	1260	280	1.8	0.6	0.43	0.56
Prince Edward Island																
Charlottetown	5	-20	-22	26	21	4460	16	107	900	1.09	1150	350	2.7	0.6	0.43	0.56
Souris	5	-19	-21	27	21	4550	15	112	950	1.14	1130	350	2.7	0.6	0.45	0.58
Summerside	10	-20	-22	27	21	4600	16	112	825	1.03	1060	350	3.1	0.6	0.47	0.60
Tignish	10	-20	-22	27	21	4770	16	96	800	1.01	1100	350	3.2	0.6	0.51	0.66
Newfoundland																
Argentia	15	-12	-14	21	18	4600	15	107	1250	1.47	1400	400	2.4	0.7	0.58	0.75
Bonavista	15	-14	-16	24	19	5000	18	96	825	1.11	1010	400	3.1	0.6	0.65	0.84
Buchans	255	-24	-27	27	20	5250	13	107	850	1.04	1125	200	4.7	0.6	0.47	0.60
Cape Harrison	5	-29	-31	26	16	6900	10	106	475	0.94	950	350	6.3	0.4	0.47	0.60
Cape Race	5	-11	-13	19	18	4900	18	130	1425	1.66	1550	400	2.3	0.7	0.81	1.05
Channel-Port aux Basques	5	-13	-15	19	18	5000	13	123	1175	1.43	1520	450	3.6	0.7	0.60	0.78
Corner Brook	35	-16	-18	26	20	4760	13	91	875	1.08	1190	300	3.7	0.6	0.43	0.55
Gander	125	-18	-20	27	20	5110	18	91	775	1.01	1180	280	3.7	0.6	0.47	0.60
Grand Bank	5	-14	-15	20	18	4550	15	123	1350	1.58	1525	400	2.4	0.7	0.57	0.74
Grand Falls	60	-26	-29	27	20	5020	15	86	775	0.97	1030	240	3.4	0.6	0.47	0.60
Happy Valley-Goose Bay	15	-31	-32	27	19	6670	18	80	575	0.83	960	160	5.3	0.4	0.33	0.42
Labrador City	550	-36	-38	24	17	7710	15	70	500	0.82	880	140	4.8	0.3	0.31	0.40
St. Anthony	10	-25	-27	22	18	6440	13	86	800	1.07	1280	450	6.1	0.6	0.67	0.87
St. John's	65	-15	-16	24	20	4800	18	118	1200	1.41	1575	400	2.9	0.7	0.60	0.78
Stephenville	25	-16	-18	24	19	4850	14	102	1000	1.19	1275	350	4.1	0.6	0.45	0.58
Twin Falls	425	-35	-37	24	17	7790	15	70	500	0.85	950	120	4.8	0.4	0.31	0.40
Wabana	75	-15	-17	24	20	4750	18	112	1125	1.34	1500	400	3.0	0.7	0.58	0.75
Wabush	550	-36	-38	24	17	7710	15	70	500	0.82	880	140	4.8	0.3	0.31	0.40
Yukon																
Aishinik	920	-44	-46	23	15	7500	8	43	190	0.57	275	40	1.9	0.1	0.29	0.38
Dawson	330	-50	-51	26	16	8120	10	49	200	0.57	350	40	2.9	0.1	0.24	0.31
Destruction Bay	815	-43	-45	23	14	7800	8	49	190	0.62	300	80	1.9	0.1	0.47	0.60
Faro	670	-46	-47	25	16	7300	10	33	215	0.58	315	40	2.3	0.1	0.27	0.35
Haines Junction	600	-45	-47	24	14	7100	8	51	145	0.56	315	180	2.2	0.1	0.26	0.34
Snag	595	-51	-53	23	16	8300	8	59	290	0.57	350	40	2.2	0.1	0.24	0.31
Teslin	690	-42	-44	24	15	6770	10	38	200	0.51	340	40	3.0	0.1	0.26	0.34


Province and Location	$\begin{array}{\|c} \text { Elev., } \\ \mathrm{m} \end{array}$	Design Temperature				De-greeDays Below $18^{\circ} \mathrm{C}$	15 Min. Rain, mm	One   Day Rain, 1/50, mm	Ann. Rain, mm	Moist. Index	Ann.   Tot.   Ppn., mm	Driv-ing RainWindPres-sures,$\mathrm{Pa}, 1 / 5$	Snow Load, kPa, 1/50		Hourly Wind Pressures, kPa	
		January		July 2.5\%												
		$\begin{gathered} 2.5 \% \\ { }^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 1 \% \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Dry } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	Wet ${ }^{\circ} \mathrm{C}$								$\mathrm{S}_{\mathrm{s}}$	$\mathrm{S}_{\mathrm{r}}$	1/10	1/50
Watson Lake	685	-46	-48	26	16	7470	10	54	250	0.55	410	60	3.2	0.1	0.27	0.35
Whitehorse	655	-41	-43	25	15	6580	8	43	170	0.49	275	40	2.0	0.1	0.29	0.38
Northwest Territories																
Aklavik	5	-42	-44	26	17	9600	6	49	115	0.67	250	60	2.8	0.1	0.37	0.48
Echo Bay / Port Radium	195	-42	-44	22	16	9300	8	60	160	0.70	250	80	3.0	0.1	0.41	0.53
Fort Good Hope	100	-43	-45	28	18	8700	9	60	140	0.60	280	80	2.9	0.1	0.34	0.44
Fort McPherson	25	-44	-46	26	17	9150	6	50	145	0.67	315	60	3.2	0.1	0.31	0.40
Fort Providence	150	-40	-43	28	18	7620	10	71	210	0.56	350	100	2.4	0.1	0.27	0.35
Fort Resolution	160	-40	-42	26	18	7750	10	60	175	0.61	300	140	2.3	0.1	0.30	0.39
Fort Simpson	120	-42	-44	28	19	7660	12	76	225	0.56	360	80	2.3	0.1	0.30	0.39
Fort Smith	205	-41	-43	28	19	7300	10	65	250	0.56	350	80	2.3	0.2	0.30	0.39
Hay River	45	-38	-41	27	18	7550	10	60	200	0.62	150	140	2.4	0.1	0.27	0.35
Holman/ Ulukhaqtuuq	10	-39	-41	18	12	10700	3	44	80	0.93	250	120	2.1	0.1	0.66	0.86
Inuvik	45	-43	-45	26	17	9600	6	49	115	0.67	425	60	3.1	0.1	0.37	0.48
Mould Bay	5	-44	-46	11	8	12900	3	33	25	0.94	100	140	1.5	0.1	0.45	0.58
Norman Wells	65	-43	-45	28	18	8510	9	60	165	0.57	320	80	3.0	0.1	0.34	0.44
Rae-Edzo	160	-42	-44	25	17	8300	10	60	175	0.59	275	80	2.3	0.1	0.36	0.47
Tungsten	1340	-49	-51	26	16	7700	10	44	315	0.75	640	40	4.3	0.1	0.34	0.44
Wrigley	80	-42	-44	28	18	8050	10	54	220	0.58	350	80	2.8	0.1	0.30	0.39
Yellowknife	160	-41	-44	25	17	8170	10	60	175	0.58	275	100	2.2	0.1	0.36	0.47
Nunavut																
Alert	5	-43	-44	13	8	13030	3	22	20	0.95	150	100	2.6	0.1	0.58	0.75
Arctic Bay	15	-42	-44	14	10	11900	3	38	60	0.90	150	160	2.4	0.1	0.43	0.55
Arviat / Eskimo Point	5	-40	-41	22	16	9850	8	65	225	0.85	300	240	3.0	0.2	0.45	0.58
Baker Lake	5	-42	-44	23	15	10700	5	55	160	0.84	260	180	3.4	0.2	0.42	0.54
Cambridge   Bay/Iqaluktuuttiaq	15	-41	-44	18	13	11670	4	38	70	0.89	140	100	1.9	0.1	0.42	0.54
Chesterfield Inlet/Igluligaarjuk	10	-40	-41	20	14	10500	5	60	175	0.88	270	240	3.6	0.2	0.43	0.56
Clyde River /Kanngiqtugaapik	5	-40	-42	14	10	11300	5	44	55	0.90	225	220	4.2	0.2	0.56	0.72
Coppermine (Kugluktuk)	10	-41	-43	23	16	10300	6	65	140	0.84	150	80	3.4	0.1	0.36	0.46
Coral Harbour /Salliq	15	-41	-42	20	14	10720	5	65	150	0.87	280	200	3.8	0.2	0.54	0.69
Eureka	5	-47	-48	12	8	13500	3	27	25	0.95	70	100	1.6	0.1	0.43	0.55
Iqaluit	45	-40	-41	17	12	9980	5	58	200	0.86	433	200	2.9	0.2	0.45	0.58
Isachsen	10	-46	-48	12	9	13600	3	27	25	0.95	75	140	1.9	0.1	0.47	0.60
Nottingham Island	30	-37	-39	16	13	10000	5	54	175	0.88	325	200	4.7	0.2	0.60	0.78
Rankin Inlet (Kangiqiniq)	10	-41	-42	21	15	10500	5	65	180	0.87	250	240	3.0	0.2	0.47	0.60

## LOGIX® INSULATED CONCRETE FORMS

Province and Location	$\begin{aligned} & \text { Elev., } \\ & \text { m } \end{aligned}$	Design Temperature				De-greeDays Below $18^{\circ} \mathrm{C}$	15   Min.   Rain,   mm	One   Day   Rain,   1/50,   mm	Ann. Rain, mm	Moist. Index	Ann. Tot. Ppn., mm	Driving Rain Wind Pressures, $\mathrm{Pa}, 1 / 5$	Snow Load, kPa, 1/50		Hourly Wind Pressures, kPa	
		January		July 2.5\%												
		$\left.\begin{gathered} 2.5 \% \\ { }^{\circ} \mathrm{C} \end{gathered} \right\rvert\,$	$\begin{aligned} & { }^{1 \%} \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Dry } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	Wet ${ }^{\circ} \mathrm{C}$								$\mathrm{S}_{\mathrm{s}}$	$\mathrm{S}_{\mathrm{r}}$	1/10	1/50
Resolute	25	-42	-43	11	9	12360	3	27	50	0.93	140	180	2.0	0.1	0.54	0.69
Resolution Island	5	-32	-34	12	10	9000	5	71	240	0.89	550	200	5.5	0.2	0.95	1.23

Council, National R. National Building Code 2015. National Research Council.

## Appendix C: Seismic Design Data for Selected Locations in Canada

Table C-3
Seismic Design Data for Selected Locations in Canada

Province and Location	Seismic Data							
	$\mathrm{S}_{\mathrm{a}}(0.2)$	$\mathrm{S}_{\mathrm{a}}(0.5)$	$\mathrm{S}_{\mathrm{a}}(1.0)$	$\mathrm{S}_{\mathrm{a}}(2.0)$	$\mathrm{S}_{\mathrm{a}}(5.0)$	$\mathrm{S}_{\mathrm{a}}(10.0)$	PGA	PGV
British Columbia								
100 Mile House	0.140	0.113	0.083	0.058	0.027	0.0080	0.064	0.109
Abbotsford	0.701	0.597	0.350	0.215	0.071	0.025	0.306	0.445
Agassiz	0.457	0.384	0.244	0.157	0.057	0.020	0.206	0.306
Alberni	0.955	0.915	0.594	0.373	0.124	0.044	0.434	0.683
Ashcroft	0.198	0.160	0.115	0.078	0.034	0.011	0.092	0.149
Bamfield	1.44	1.35	0.871	0.525	0.167	0.059	0.682	0.931
Beatton River	0.132	0.083	0.049	0.026	0.0083	0.0037	0.079	0.056
Bella Bella	0.208	0.232	0.187	0.129	0.049	0.017	0.103	0.286
Bella Coola	0.163	0.172	0.143	0.105	0.043	0.014	0.083	0.225
Burns Lake	0.095	0.080	0.066	0.052	0.024	0.0076	0.043	0.111
Cache Creek	0.195	0.157	0.112	0.077	0.034	0.010	0.090	0.148
Campbell River	0.595	0.582	0.408	0.265	0.094	0.034	0.283	0.487
Carmi	0.141	0.120	0.090	0.062	0.028	0.0086	0.065	0.111
Castlegar	0.129	0.100	0.074	0.048	0.022	0.0069	0.058	0.085
Chetwynd	0.176	0.121	0.068	0.033	0.013	0.0045	0.082	0.071

National Building Code of Canata 2015 Volume 1, Division B


## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table C-3 (Continued)

Province and Location	Seismic Data							
	$\mathrm{S}_{\mathrm{a}}(0.2)$	$\mathrm{S}_{\mathrm{a}}(0.5)$	$\mathrm{S}_{\mathrm{a}}(1.0)$	$\mathrm{S}_{\mathrm{a}}(2.0)$	$\mathrm{S}_{\mathrm{a}}(5.0)$	$\mathrm{S}_{\mathrm{a}}(10.0)$	PGA	PGV
Chilliwack	0.539	0.448	0.277	0.174	0.062	0.021	0.242	0.347
Comox	0.685	0.662	0.455	0.292	0.102	0.036	0.317	0.538
Courtenay	0.692	0.670	0.461	0.296	0.104	0.037	0.321	0.545
Cranbrook	0.170	0.138	0.089	0.047	0.018	0.0062	0.075	0.085
Crescent Valley	0.130	0.101	0.073	0.047	0.021	0.0067	0.058	0.082
Crofton	1.13	1.04	0.598	0.358	0.111	0.039	0.491	0.754
Dawson Creek	0.150	0.098	0.055	0.026	0.0080	0.0032	0.080	0.059
Dease Lake	0.103	0.091	0.074	0.049	0.017	0.0067	0.044	0.078
Dog Creek	0.172	0.140	0.102	0.071	0.032	0.0098	0.079	0.140
Duncan	1.17	1.09	0.631	0.378	0.118	0.042	0.513	0.786
Elko	0.217	0.174	0.108	0.053	0.019	0.0066	0.098	0.101
Fernie	0.234	0.175	0.106	0.052	0.019	0.0065	0.106	0.101
Fort Nelson	0.141	0.103	0.068	0.036	0.012	0.0049	0.081	0.071
Fort St. John	0.145	0.094	0.053	0.026	0.0077	0.0032	0.079	0.058
Glacier	0.206	0.142	0.081	0.044	0.018	0.0058	0.093	0.083
Gold River	1.01	0.988	0.664	0.413	0.135	0.048	0.466	0.743
Golden	0.263	0.174	0.094	0.046	0.017	0.0056	0.120	0.095
Grand Forks	0.133	0.108	0.082	0.056	0.026	0.0079	0.061	0.101
Greenwood	0.136	0.113	0.085	0.059	0.027	0.0082	0.063	0.105
Hope	0.363	0.304	0.201	0.131	0.051	0.017	0.167	0.251
Jordan River	1.40	1.31	0.817	0.495	0.157	0.055	0.639	0.923
Kamloops	0.146	0.123	0.091	0.064	0.029	0.0087	0.067	0.117
Kaslo	0.142	0.109	0.073	0.043	0.019	0.0062	0.063	0.076
Kelowna	0.143	0.122	0.091	0.063	0.029	0.0087	0.066	0.115
Kimberley	0.165	0.130	0.084	0.045	0.018	0.0060	0.073	0.080
Kitimat Plant	0.161	0.167	0.137	0.096	0.036	0.012	0.080	0.224
Kitimat Townsite	0.161	0.167	0.137	0.096	0.036	0.012	0.080	0.224
Ladysmith	1.10	1.02	0.587	0.353	0.110	0.039	0.482	0.738
Langford	1.32	1.19	0.697	0.415	0.130	0.045	0.590	0.852
Lillooet	0.285	0.214	0.145	0.096	0.040	0.013	0.132	0.188
Lytton	0.292	0.228	0.155	0.103	0.042	0.013	0.136	0.197
Mackenzie	0.165	0.117	0.066	0.036	0.015	0.0052	0.074	0.078
Masset	0.791	0.744	0.496	0.283	0.083	0.029	0.364	0.632
McBride	0.253	0.165	0.089	0.044	0.018	0.0056	0.117	0.097
McLeod Lake	0.153	0.110	0.064	0.037	0.016	0.0053	0.068	0.078
Merritt	0.211	0.175	0.125	0.085	0.037	0.011	0.098	0.160
Mission City	0.644	0.550	0.327	0.204	0.069	0.024	0.283	0.419
Montrose	0.129	0.102	0.075	0.049	0.022	0.0069	0.058	0.086
Nakusp	0.135	0.102	0.070	0.045	0.020	0.0063	0.060	0.079
Nanaimo	1.02	0.942	0.542	0.328	0.104	0.037	0.446	0.684
Nelson	0.131	0.103	0.073	0.046	0.020	0.0065	0.058	0.080
Ocean Falls	0.180	0.199	0.163	0.117	0.046	0.015	0.091	0.258

National Building Code of Canata 2015 Volume 1, Division B

Table C-3 (Continued)

Province and Location	Seismic Data							
	$\mathrm{S}_{\mathrm{a}}(0.2)$	$\mathrm{S}_{\mathrm{a}}(0.5)$	$\mathrm{S}_{\mathrm{a}}(1.0)$	$\mathrm{S}_{\mathrm{a}}(2.0)$	$\mathrm{S}_{\mathrm{a}}(5.0)$	$\mathrm{S}_{\mathrm{a}}(10.0)$	PGA	PGV
Osoyoos	0.175	0.150	0.110	0.075	0.033	0.010	0.081	0.138
Parksville	0.917	0.859	0.519	0.322	0.106	0.038	0.405	0.639
Penticton	0.159	0.138	0.101	0.070	0.031	0.0096	0.074	0.129
Port Alberni	0.987	0.946	0.614	0.383	0.126	0.045	0.450	0.702
Port Alice	1.60	1.27	0.759	0.412	0.128	0.042	0.689	0.868
Port Hardy	0.700	0.659	0.447	0.272	0.091	0.032	0.320	0.543
Port McNeill	0.711	0.678	0.464	0.285	0.096	0.034	0.326	0.557
Port Renfrew	1.44	1.35	0.850	0.511	0.162	0.057	0.668	0.939
Powell River	0.595	0.556	0.373	0.242	0.086	0.031	0.273	0.457
Prince George	0.113	0.089	0.059	0.040	0.019	0.0059	0.049	0.079
Prince Rupert	0.246	0.269	0.209	0.135	0.046	0.016	0.117	0.314
Princeton	0.259	0.209	0.144	0.096	0.040	0.012	0.121	0.182
Qualicum Beach	0.888	0.838	0.517	0.323	0.108	0.038	0.395	0.629
Queen Charlotte City	1.62	1.37	0.842	0.452	0.124	0.041	0.757	0.989
Quesnel	0.105	0.088	0.065	0.047	0.022	0.0069	0.047	0.091
Revelstoke	0.145	0.109	0.070	0.043	0.019	0.0062	0.064	0.078
Salmon Arm	0.131	0.104	0.075	0.052	0.024	0.0073	0.059	0.093
Sandspit	1.31	1.16	0.724	0.396	0.110	0.036	0.603	0.868
Sechelt	0.828	0.745	0.434	0.265	0.086	0.030	0.363	0.555
Sidney	1.23	1.10	0.630	0.371	0.115	0.040	0.545	0.790
Smith River	0.705	0.447	0.234	0.100	0.028	0.0096	0.354	0.255
Smithers	0.100	0.090	0.076	0.058	0.025	0.0082	0.047	0.134
Sooke	1.34	1.24	0.752	0.456	0.144	0.050	0.605	0.885
Squamish	0.600	0.517	0.314	0.200	0.069	0.024	0.266	0.404
Stewart	0.139	0.132	0.111	0.078	0.029	0.010	0.068	0.180
Tahsis	1.35	1.19	0.767	0.456	0.144	0.050	0.622	0.852
Taylor	0.143	0.093	0.052	0.025	0.0076	0.0031	0.079	0.058
Terrace	0.146	0.145	0.120	0.085	0.032	0.011	0.072	0.200
Tofino	1.46	1.36	0.891	0.536	0.170	0.060	0.695	0.945
Trail	0.129	0.101	0.075	0.050	0.022	0.0070	0.058	0.087
Ucluelet	1.48	1.38	0.897	0.539	0.171	0.060	0.708	0.949
Vancouver Region								
Burnaby (Simon Fraser Univ.)	0.768	0.673	0.386	0.236	0.076	0.027	0.333	0.500
Cloverdale	0.800	0.702	0.400	0.243	0.077	0.027	0.347	0.519
Haney	0.691	0.602	0.352	0.217	0.071	0.025	0.301	0.452
Ladner	0.924	0.827	0.461	0.276	0.085	0.030	0.399	0.601
Langley	0.772	0.674	0.387	0.236	0.076	0.027	0.335	0.500
New Westminster	0.800	0.704	0.401	0.244	0.077	0.027	0.347	0.522
North Vancouver	0.794	0.699	0.399	0.243	0.077	0.027	0.345	0.518
Richmond	0.885	0.787	0.443	0.266	0.083	0.029	0.383	0.578
Surrey (88 Ave \& 156 St.)	0.786	0.690	0.394	0.240	0.076	0.027	0.341	0.511
Vancouver (City Hall)	0.848	0.751	0.425	0.257	0.080	0.029	0.369	0.553

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table C-3 (Continued)

Province and Location	Seismic Data							
	$\mathrm{S}_{\mathrm{a}}(0.2)$	$\mathrm{S}_{\mathrm{a}}(0.5)$	$\mathrm{S}_{\mathrm{a}}(1.0)$	$\mathrm{S}_{\mathrm{a}}(2.0)$	$\mathrm{S}_{\mathrm{a}}(5.0)$	$\mathrm{S}_{\mathrm{a}}(10.0)$	PGA	PGV
Vancouver (Granville \& 41 Ave)	0.863	0.765	0.432	0.261	0.081	0.029	0.375	0.563
West Vancouver	0.818	0.721	0.410	0.250	0.079	0.028	0.356	0.534
Vernon	0.133	0.108	0.080	0.056	0.025	0.0077	0.061	0.099
Victoria Region								
Victoria (Gonzales Hts)	1.30	1.15	0.668	0.394	0.123	0.043	0.576	0.829
Victoria (Mt Tolmie)	1.29	1.14	0.662	0.390	0.121	0.042	0.573	0.824
Victoria	1.30	1.16	0.676	0.399	0.125	0.044	0.580	0.834
Whistler	0.438	0.357	0.233	0.152	0.058	0.020	0.203	0.296
White Rock	0.868	0.765	0.432	0.260	0.081	0.029	0.376	0.562
Williams Lake	0.136	0.110	0.081	0.057	0.027	0.0080	0.062	0.110
Youbou	1.20	1.13	0.678	0.414	0.131	0.046	0.536	0.816
Alberta								
Athabasca	0.068	0.043	0.027	0.014	0.0041	0.0018	0.039	0.031
Banff	0.279	0.184	0.099	0.046	0.016	0.0053	0.128	0.097
Barrhead	0.105	0.064	0.038	0.019	0.0055	0.0024	0.065	0.046
Beaverlodge	0.153	0.102	0.057	0.028	0.0090	0.0035	0.081	0.062
Brooks	0.116	0.076	0.051	0.028	0.0089	0.0042	0.072	0.056
Calgary	0.192	0.126	0.072	0.036	0.012	0.0048	0.098	0.075
Campsie	0.113	0.067	0.040	0.020	0.0058	0.0024	0.070	0.048
Camrose	0.095	0.058	0.035	0.018	0.0052	0.0022	0.058	0.042
Canmore	0.278	0.183	0.098	0.046	0.016	0.0053	0.128	0.097
Cardston	0.273	0.203	0.122	0.058	0.018	0.0066	0.131	0.118
Claresholm	0.217	0.148	0.090	0.044	0.015	0.0056	0.107	0.089
Cold Lake	0.055	0.034	0.019	0.0078	0.0016	0.0008	0.032	0.023
Coleman	0.279	0.195	0.114	0.054	0.019	0.0065	0.128	0.110
Coronation	0.075	0.048	0.029	0.015	0.0046	0.0020	0.044	0.034
Cowley	0.282	0.198	0.116	0.055	0.018	0.0065	0.130	0.113
Drumheller	0.122	0.077	0.048	0.026	0.0080	0.0037	0.075	0.055
Edmonton	0.103	0.062	0.036	0.018	0.0053	0.0022	0.064	0.044
Edson	0.165	0.111	0.062	0.030	0.0089	0.0035	0.087	0.066
Embarras Portage	0.052	0.031	0.016	0.0065	0.0013	0.0007	0.030	0.020
Fairview	0.121	0.071	0.041	0.020	0.0059	0.0025	0.075	0.051
Fort MacLeod	0.225	0.160	0.097	0.047	0.015	0.0058	0.111	0.095
Fort McMurray	0.053	0.034	0.018	0.0078	0.0016	0.0008	0.031	0.023
Fort Saskatchewan	0.086	0.053	0.032	0.017	0.0050	0.0021	0.052	0.038
Fort Vermilion	0.056	0.036	0.019	0.0081	0.0018	0.0008	0.032	0.024
Grande Prairie	0.141	0.093	0.053	0.026	0.0074	0.0031	0.079	0.058
Habay	0.068	0.045	0.033	0.020	0.0067	0.0031	0.040	0.036
Hardisty	0.068	0.043	0.027	0.014	0.0041	0.0018	0.040	0.031
High River	0.203	0.134	0.079	0.039	0.013	0.0052	0.101	0.079
Hinton	0.280	0.182	0.096	0.043	0.015	0.0048	0.131	0.097
Jasper	0.287	0.190	0.101	0.046	0.017	0.0052	0.132	0.101

National Building Code of Canata 2015 Volume 1, Division B

Table C-3 (Continued)


## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table C-3 (Continued)

Province and Location	Seismic Data							
	$\mathrm{S}_{\mathrm{a}}(0.2)$	$\mathrm{S}_{\mathrm{a}}(0.5)$	$\mathrm{S}_{\mathrm{a}}(1.0)$	$\mathrm{S}_{\mathrm{a}}(2.0)$	$\mathrm{S}_{\mathrm{a}}(5.0)$	$\mathrm{S}_{\mathrm{a}}(10.0)$	PGA	PGV
Moose Jaw	0.096	0.058	0.030	0.013	0.0027	0.0013	0.057	0.042
Nipawin	0.054	0.034	0.018	0.0078	0.0016	0.0008	0.032	0.023
North Battleford	0.056	0.036	0.020	0.0085	0.0018	0.0010	0.032	0.024
Prince Albert	0.055	0.034	0.019	0.0078	0.0016	0.0008	0.032	0.023
Qu'Appelle	0.090	0.054	0.028	0.012	0.0025	0.0011	0.054	0.039
Regina	0.101	0.060	0.030	0.013	0.0027	0.0013	0.061	0.043
Rosetown	0.059	0.038	0.022	0.0091	0.0019	0.0010	0.034	0.027
Saskatoon	0.057	0.037	0.021	0.0089	0.0019	0.0010	0.033	0.025
Scott	0.057	0.037	0.020	0.0086	0.0019	0.0010	0.033	0.025
Strasbourg	0.074	0.046	0.025	0.010	0.0022	0.0011	0.043	0.032
Swift Current	0.070	0.045	0.025	0.012	0.0030	0.0014	0.040	0.032
Uranium City	0.053	0.032	0.016	0.0066	0.0013	0.0007	0.031	0.021
Weyburn	0.186	0.097	0.045	0.018	0.0039	0.0014	0.118	0.070
Yorkton	0.063	0.040	0.022	0.0091	0.0019	0.0010	0.036	0.028
Manitoba								
Beausejour	0.056	0.033	0.017	0.0067	0.0015	0.0007	0.032	0.021
Boissevain	0.059	0.037	0.020	0.0082	0.0018	0.0010	0.034	0.025
Brandon	0.054	0.031	0.016	0.0063	0.0013	0.0007	0.031	0.020
Churchill	0.053	0.032	0.017	0.0069	0.0015	0.0008	0.031	0.021
Dauphin	0.055	0.035	0.019	0.0079	0.0018	0.0010	0.032	0.024
Flin Flon	0.054	0.032	0.016	0.0065	0.0013	0.0007	0.031	0.021
Gimli	0.055	0.032	0.017	0.0067	0.0015	0.0007	0.032	0.021
Island Lake	0.054	0.033	0.017	0.0070	0.0015	0.0008	0.031	0.021
Lac du Bonnet	0.056	0.033	0.017	0.0067	0.0015	0.0007	0.033	0.023
Lynn Lake	0.053	0.032	0.016	0.0066	0.0013	0.0007	0.031	0.021
Morden	0.053	0.031	0.015	0.0063	0.0013	0.0007	0.031	0.020
Neepawa	0.054	0.031	0.016	0.0065	0.0013	0.0007	0.031	0.021
Pine Falls	0.056	0.033	0.017	0.0067	0.0015	0.0007	0.032	0.021
Portage la Prairie	0.054	0.032	0.016	0.0065	0.0013	0.0007	0.031	0.021
Rivers	0.058	0.037	0.020	0.0084	0.0018	0.0010	0.034	0.025
Sandilands	0.055	0.032	0.016	0.0065	0.0013	0.0007	0.032	0.021
Selkirk	0.055	0.032	0.016	0.0066	0.0013	0.0007	0.032	0.021
Split Lake	0.053	0.032	0.017	0.0067	0.0015	0.0007	0.031	0.021
Steinbach	0.055	0.032	0.016	0.0065	0.0013	0.0007	0.032	0.021
Swan River	0.055	0.035	0.019	0.0079	0.0018	0.0008	0.032	0.024
The Pas	0.054	0.032	0.016	0.0065	0.0013	0.0007	0.031	0.021
Thompson	0.053	0.032	0.017	0.0067	0.0015	0.0007	0.031	0.021
Virden	0.064	0.041	0.022	0.0089	0.0019	0.0010	0.037	0.028
Winnipeg	0.054	0.032	0.016	0.0066	0.0013	0.0007	0.032	0.021
Ontario								
Ailsa Craig	0.095	0.064	0.039	0.020	0.0049	0.0021	0.056	0.050
	0.210	0.114	0.060	0.029	0.0071	0.0028	0.134	0.091

National Building Code of Canata 2015 Volume 1, Division B

Table C-3 (Continued)

Province and Location	Seismic Data							
	$\mathrm{S}_{\mathrm{a}}(0.2)$	$\mathrm{S}_{\mathrm{a}}(0.5)$	$\mathrm{S}_{\mathrm{a}}(1.0)$	$\mathrm{S}_{\mathrm{a}}(2.0)$	$\mathrm{S}_{\mathrm{a}}(5.0)$	Sa(10.0)	PGA	PGV
Alexandria	0.589	0.309	0.148	0.068	0.018	0.0062	0.376	0.255
Alliston	0.111	0.076	0.046	0.024	0.0059	0.0025	0.066	0.060
Almonte	0.337	0.188	0.098	0.048	0.013	0.0049	0.215	0.157
Armstrong	0.064	0.037	0.019	0.0081	0.0018	0.0008	0.038	0.025
Arnprior	0.371	0.201	0.102	0.049	0.013	0.0049	0.238	0.168
Atikokan	0.069	0.038	0.018	0.0072	0.0015	0.0007	0.041	0.025
Attawapiskat	0.074	0.043	0.022	0.0092	0.0019	0.0010	0.045	0.030
Aurora	0.138	0.087	0.050	0.026	0.0064	0.0027	0.085	0.068
Bancroft	0.151	0.105	0.063	0.032	0.0084	0.0035	0.090	0.085
Barrie	0.108	0.077	0.047	0.025	0.0061	0.0025	0.063	0.060
Barriefield	0.162	0.110	0.066	0.034	0.0089	0.0038	0.098	0.091
Beaverton	0.117	0.082	0.050	0.026	0.0065	0.0028	0.069	0.064
Belleville	0.162	0.105	0.061	0.031	0.0080	0.0034	0.100	0.087
Belmont	0.116	0.073	0.042	0.021	0.0053	0.0021	0.070	0.056
Kitchenuhmay-koosib (Big Trout Lake)	0.054	0.033	0.017	0.0072	0.0015	0.0008	0.032	0.023
CFB Borden	0.107	0.075	0.046	0.024	0.0059	0.0025	0.063	0.059
Bracebridge	0.116	0.084	0.051	0.027	0.0068	0.0028	0.068	0.067
Bradford	0.123	0.081	0.048	0.025	0.0062	0.0027	0.074	0.063
Brampton	0.168	0.096	0.052	0.026	0.0064	0.0025	0.106	0.074
Brantford	0.155	0.089	0.049	0.024	0.0059	0.0024	0.097	0.068
Brighton	0.173	0.106	0.060	0.030	0.0076	0.0032	0.108	0.087
Brockville	0.259	0.157	0.086	0.043	0.011	0.0046	0.164	0.131
Burk's Falls	0.143	0.096	0.057	0.029	0.0074	0.0031	0.086	0.076
Burlington	0.266	0.131	0.062	0.029	0.0068	0.0027	0.172	0.102
Cambridge	0.141	0.084	0.047	0.024	0.0058	0.0024	0.088	0.066
Campbellford	0.144	0.097	0.058	0.030	0.0076	0.0032	0.088	0.078
Cannington	0.122	0.084	0.051	0.027	0.0067	0.0028	0.073	0.067
Carleton Place	0.302	0.175	0.093	0.046	0.012	0.0048	0.192	0.146
Cavan	0.140	0.092	0.055	0.028	0.0071	0.0030	0.086	0.074
Centralia	0.092	0.064	0.039	0.020	0.0050	0.0021	0.054	0.050
Chapleau	0.071	0.050	0.031	0.016	0.0037	0.0017	0.041	0.039
Chatham	0.112	0.070	0.039	0.019	0.0047	0.0020	0.068	0.054
Chesley	0.083	0.062	0.040	0.021	0.0052	0.0022	0.047	0.050
Clinton	0.084	0.061	0.038	0.020	0.0049	0.0021	0.048	0.048
Coboconk	0.120	0.086	0.052	0.027	0.0070	0.0030	0.070	0.068
Cobourg	0.179	0.106	0.059	0.030	0.0074	0.0031	0.113	0.086
Cochrane	0.222	0.107	0.052	0.024	0.0058	0.0022	0.145	0.083
Colborne	0.176	0.106	0.060	0.030	0.0076	0.0031	0.111	0.087
Collingwood	0.096	0.070	0.044	0.023	0.0058	0.0024	0.055	0.056
Cornwall	0.587	0.307	0.147	0.067	0.017	0.0060	0.375	0.254
Corunna	0.087	0.060	0.036	0.018	0.0046	0.0020	0.050	0.047
Deep River	0.389	0.208	0.104	0.049	0.013	0.0048	0.250	0.172

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table C-3 (Continued)

Province and Location	Seismic Data							
	$\mathrm{S}_{\mathrm{a}}(0.2)$	$\mathrm{S}_{\mathrm{a}}(0.5)$	$\mathrm{S}_{\mathrm{a}}(1.0)$	$\mathrm{S}_{\mathrm{a}}(2.0)$	$\mathrm{S}_{\mathrm{a}}(5.0)$	$\mathrm{S}_{\mathrm{a}}(10.0)$	PGA	PGV
Deseronto	0.158	0.106	0.062	0.032	0.0081	0.0035	0.096	0.087
Dorchester	0.112	0.072	0.042	0.021	0.0052	0.0021	0.067	0.056
Dorion	0.059	0.035	0.018	0.0076	0.0016	0.0008	0.035	0.024
Dresden	0.104	0.067	0.039	0.019	0.0047	0.0020	0.062	0.051
Dryden	0.072	0.040	0.019	0.0076	0.0016	0.0008	0.043	0.027
Dundalk	0.097	0.069	0.043	0.022	0.0056	0.0024	0.057	0.055
Dunnville	0.232	0.120	0.059	0.028	0.0067	0.0027	0.149	0.093
Durham	0.088	0.065	0.041	0.021	0.0053	0.0022	0.051	0.051
Dutton	0.116	0.072	0.041	0.021	0.0050	0.0021	0.071	0.056
Earlton	0.182	0.108	0.059	0.029	0.0074	0.0030	0.114	0.086
Edison	0.070	0.039	0.019	0.0075	0.0016	0.0008	0.042	0.027
Elliot Lake	0.074	0.054	0.035	0.018	0.0046	0.0020	0.043	0.043
Elmvale	0.101	0.074	0.046	0.024	0.0061	0.0025	0.059	0.059
Embro	0.111	0.072	0.042	0.022	0.0053	0.0022	0.067	0.056
Englehart	0.175	0.104	0.057	0.029	0.0073	0.0030	0.109	0.083
Espanola	0.086	0.063	0.039	0.021	0.0052	0.0021	0.050	0.050
Exeter	0.090	0.063	0.039	0.020	0.0049	0.0021	0.052	0.050
Fenelon Falls	0.121	0.086	0.052	0.027	0.0068	0.0030	0.072	0.068
Fergus	0.115	0.075	0.045	0.023	0.0056	0.0024	0.069	0.059
Forest	0.087	0.061	0.037	0.019	0.0047	0.0020	0.051	0.047
Fort Erie	0.312	0.152	0.070	0.032	0.0074	0.0028	0.202	0.117
Fort Erie (Ridgeway)	0.307	0.149	0.069	0.031	0.0073	0.0028	0.198	0.115
Fort Frances	0.064	0.035	0.017	0.0069	0.0015	0.0007	0.039	0.024
Gananoque	0.180	0.119	0.070	0.036	0.0095	0.0039	0.110	0.099
Geraldton	0.057	0.036	0.019	0.0082	0.0018	0.0010	0.033	0.024
Glencoe	0.107	0.068	0.040	0.020	0.0049	0.0021	0.064	0.054
Goderich	0.079	0.059	0.037	0.019	0.0049	0.0020	0.045	0.047
Gore Bay	0.071	0.055	0.035	0.018	0.0047	0.0020	0.040	0.044
Graham	0.071	0.039	0.020	0.0079	0.0016	0.0008	0.043	0.027
Gravenhurst (Muskoka Airport)	0.112	0.082	0.050	0.026	0.0067	0.0028	0.065	0.064
Grimsby	0.301	0.146	0.068	0.030	0.0073	0.0028	0.195	0.113
Guelph	0.133	0.082	0.047	0.024	0.0058	0.0024	0.082	0.063
Guthrie	0.109	0.078	0.048	0.025	0.0062	0.0027	0.064	0.062
Haileybury	0.219	0.127	0.067	0.033	0.0083	0.0034	0.138	0.101
Haldimand (Caledonia)	0.215	0.112	0.056	0.027	0.0064	0.0025	0.138	0.087
Haldimand (Hagersville)	0.172	0.096	0.051	0.025	0.0061	0.0024	0.108	0.074
Haliburton	0.133	0.095	0.057	0.030	0.0077	0.0032	0.079	0.076
Halton Hills (Georgetown)	0.155	0.090	0.050	0.025	0.0062	0.0025	0.097	0.070
Hamilton	0.260	0.128	0.061	0.028	0.0068	0.0027	0.168	0.101
Hanover	0.085	0.063	0.040	0.021	0.0052	0.0022	0.049	0.050
Hastings	0.141	0.096	0.057	0.029	0.0074	0.0031	0.085	0.076
Hawkesbury	0.506	0.268	0.131	0.062	0.016	0.0058	0.326	0.224

National Building Code of Canata 2015 Volume 1, Division B

Table C-3 (Continued)

Province and Location	Seismic Data							
	$\mathrm{S}_{\mathrm{a}}(0.2)$	$\mathrm{S}_{\mathrm{a}}(0.5)$	$\mathrm{S}_{\mathrm{a}}(1.0)$	$\mathrm{S}_{\mathrm{a}}(2.0)$	$\mathrm{S}_{\mathrm{a}}(5.0)$	$\mathrm{S}_{\mathrm{a}}(10.0)$	PGA	PGV
Hearst	0.073	0.048	0.028	0.013	0.0031	0.0014	0.043	0.035
Honey Harbour	0.103	0.076	0.047	0.025	0.0062	0.0027	0.060	0.060
Hornepayne	0.063	0.043	0.025	0.012	0.0028	0.0014	0.037	0.031
Huntsville	0.129	0.091	0.054	0.028	0.0071	0.0031	0.077	0.072
Ingersoll	0.116	0.073	0.043	0.022	0.0053	0.0022	0.070	0.058
Iroquois Falls	0.196	0.101	0.052	0.025	0.0061	0.0024	0.127	0.079
Jellicoe	0.057	0.035	0.019	0.0081	0.0018	0.0010	0.033	0.024
Kapuskasing	0.112	0.064	0.035	0.017	0.0040	0.0017	0.070	0.048
Kemptville	0.429	0.229	0.114	0.054	0.014	0.0052	0.275	0.189
Kenora	0.064	0.036	0.018	0.0072	0.0015	0.0007	0.038	0.024
Killaloe	0.264	0.154	0.083	0.041	0.011	0.0044	0.168	0.127
Kincardine	0.076	0.058	0.037	0.019	0.0049	0.0021	0.043	0.046
Kingston	0.161	0.110	0.065	0.034	0.0089	0.0038	0.098	0.091
Kinmount	0.123	0.089	0.054	0.028	0.0071	0.0031	0.072	0.071
Kirkland Lake	0.159	0.095	0.053	0.027	0.0067	0.0028	0.099	0.076
Kitchener	0.122	0.077	0.045	0.023	0.0056	0.0024	0.074	0.060
Lakefield	0.130	0.091	0.055	0.028	0.0073	0.0031	0.078	0.072
Lansdowne House	0.056	0.035	0.019	0.0078	0.0016	0.0008	0.033	0.024
Leamington	0.114	0.070	0.038	0.018	0.0044	0.0018	0.069	0.052
Lindsay	0.126	0.087	0.052	0.027	0.0068	0.0030	0.076	0.068
Lion's Head	0.080	0.062	0.040	0.021	0.0052	0.0022	0.045	0.050
Listowel	0.093	0.066	0.041	0.021	0.0052	0.0022	0.054	0.052
London	0.108	0.070	0.041	0.021	0.0052	0.0021	0.064	0.055
Lucan	0.097	0.065	0.039	0.020	0.0050	0.0021	0.057	0.051
Maitland	0.282	0.167	0.090	0.045	0.012	0.0046	0.179	0.140
Markdale	0.089	0.066	0.042	0.022	0.0055	0.0022	0.052	0.052
Markham	0.182	0.103	0.056	0.028	0.0068	0.0028	0.115	0.080
Martin	0.072	0.039	0.019	0.0075	0.0015	0.0008	0.043	0.027
Matheson	0.160	0.091	0.050	0.025	0.0062	0.0025	0.101	0.072
Mattawa	0.446	0.237	0.114	0.052	0.013	0.0046	0.285	0.191
Midland	0.101	0.075	0.046	0.024	0.0061	0.0025	0.058	0.059
Milton	0.191	0.103	0.054	0.026	0.0064	0.0025	0.122	0.080
Milverton	0.098	0.067	0.041	0.021	0.0053	0.0022	0.058	0.052
Minden	0.124	0.089	0.054	0.028	0.0071	0.0031	0.073	0.071
Mississauga	0.219	0.115	0.058	0.028	0.0068	0.0027	0.141	0.090
Mississauga (Lester B. Pearson Int'l Airport)	0.193	0.105	0.056	0.027	0.0067	0.0027	0.123	0.082
Mississauga (Port Credit)	0.247	0.125	0.062	0.029	0.0070	0.0027	0.159	0.098
Mitchell	0.093	0.065	0.040	0.021	0.0052	0.0021	0.054	0.051
Moosonee	0.081	0.051	0.029	0.014	0.0033	0.0015	0.049	0.038
Morrisburg	0.558	0.287	0.135	0.062	0.016	0.0056	0.358	0.236
Mount Forest	0.093	0.067	0.041	0.022	0.0053	0.0022	0.054	0.052
Nakina	0.057	0.036	0.019	0.0082	0.0018	0.0010	0.033	0.024
Nanticoke (Jarvis)	0.156	0.090	0.049	0.024	0.0059	0.0024	0.098	0.068

National Building Code of Canata 2015 Volume 1, Division B

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table C-3 (Continued)

Province and Location	Seismic Data							
	$\mathrm{S}_{\mathrm{a}}(0.2)$	$\mathrm{S}_{\mathrm{a}}(0.5)$	$\mathrm{S}_{\mathrm{a}}(1.0)$	$\mathrm{S}_{\mathrm{a}}(2.0)$	$\mathrm{S}_{\mathrm{a}}(5.0)$	$\mathrm{S}_{\mathrm{a}}(10.0)$	PGA	PGV
Nanticoke (Port Dover)	0.144	0.085	0.047	0.023	0.0058	0.0024	0.089	0.066
Napanee	0.156	0.106	0.063	0.033	0.0084	0.0037	0.095	0.087
New Liskeard	0.209	0.122	0.065	0.032	0.0081	0.0032	0.132	0.097
Newcastle	0.186	0.107	0.058	0.029	0.0071	0.0030	0.118	0.086
Newcastle (Bowmanville)	0.188	0.107	0.058	0.029	0.0071	0.0030	0.119	0.086
Newmarket	0.132	0.085	0.050	0.026	0.0064	0.0027	0.081	0.067
Niagara Falls	0.321	0.157	0.072	0.032	0.0076	0.0030	0.207	0.121
North Bay	0.247	0.145	0.076	0.037	0.0095	0.0037	0.155	0.114
Norwood	0.136	0.094	0.057	0.029	0.0074	0.0031	0.082	0.075
Oakville	0.260	0.129	0.062	0.029	0.0070	0.0027	0.167	0.101
Orangeville	0.115	0.076	0.046	0.023	0.0058	0.0024	0.069	0.059
Orillia	0.109	0.079	0.049	0.026	0.0064	0.0027	0.064	0.063
Oshawa	0.192	0.108	0.058	0.029	0.0071	0.0030	0.122	0.086
Ottawa (Metropolitan)								
Ottawa (City Hall)	0.439	0.237	0.118	0.056	0.015	0.0055	0.281	0.196
Ottawa (Barrhaven)	0.427	0.230	0.115	0.055	0.015	0.0053	0.273	0.191
Ottawa (Kanata)	0.401	0.218	0.110	0.053	0.014	0.0052	0.257	0.181
Ottawa (M-C Int'I Airport)	0.446	0.240	0.119	0.056	0.015	0.0055	0.285	0.199
Ottawa (Orleans)	0.474	0.252	0.124	0.058	0.015	0.0056	0.304	0.208
Owen Sound	0.083	0.064	0.041	0.021	0.0053	0.0022	0.048	0.051
Pagwa River	0.060	0.040	0.023	0.011	0.0024	0.0013	0.035	0.028
Paris	0.141	0.084	0.047	0.023	0.0058	0.0024	0.088	0.066
Parkhill	0.092	0.063	0.038	0.020	0.0049	0.0020	0.054	0.050
Parry Sound	0.110	0.079	0.048	0.025	0.0064	0.0027	0.064	0.063
Pelham (Fonthill)	0.311	0.152	0.070	0.031	0.0074	0.0028	0.201	0.117
Pembroke	0.379	0.203	0.101	0.049	0.013	0.0048	0.243	0.168
Penetanguishene	0.101	0.074	0.046	0.024	0.0061	0.0025	0.058	0.059
Perth	0.225	0.142	0.080	0.041	0.011	0.0045	0.140	0.119
Petawawa	0.379	0.202	0.101	0.048	0.013	0.0048	0.243	0.166
Peterborough	0.135	0.092	0.055	0.028	0.0071	0.0031	0.082	0.072
Petrolia	0.092	0.062	0.037	0.019	0.0047	0.0020	0.054	0.048
Pickering (Dunbarton)	0.219	0.117	0.060	0.029	0.0071	0.0028	0.140	0.094
Picton	0.159	0.104	0.061	0.031	0.0078	0.0032	0.098	0.086
Plattsville	0.119	0.075	0.044	0.022	0.0055	0.0022	0.072	0.059
Point Alexander	0.391	0.209	0.104	0.049	0.013	0.0048	0.251	0.172
Port Burwell	0.132	0.079	0.044	0.022	0.0055	0.0022	0.081	0.062
Port Colborne	0.298	0.146	0.068	0.031	0.0073	0.0028	0.192	0.113
Port Elgin	0.077	0.060	0.038	0.020	0.0050	0.0021	0.044	0.048
Port Hope	0.181	0.106	0.059	0.029	0.0073	0.0030	0.114	0.086
Port Perry	0.144	0.091	0.053	0.027	0.0067	0.0028	0.089	0.071
Port Stanley	0.123	0.075	0.043	0.021	0.0052	0.0021	0.075	0.058
Prescott	0.350	0.195	0.101	0.049	0.013	0.0049	0.224	0.162

National Building Code of Canata 2015 Volume 1, Division B

Table C-3 (Continued)

Province and Location	Seismic Data							
	$\mathrm{S}_{\mathrm{a}}(0.2)$	$\mathrm{S}_{\mathrm{a}}(0.5)$	$\mathrm{S}_{\mathrm{a}}(1.0)$	$\mathrm{S}_{\mathrm{a}}(2.0)$	$\mathrm{S}_{\mathrm{a}}(5.0)$	$\mathrm{S}_{\mathrm{a}}(10.0)$	PGA	PGV
Princeton	0.129	0.079	0.045	0.023	0.0056	0.0022	0.079	0.062
Raith	0.067	0.038	0.019	0.0078	0.0016	0.0008	0.040	0.025
Rayside-Balfour (Chelmsford)	0.104	0.072	0.044	0.023	0.0058	0.0024	0.061	0.056
Red Lake	0.068	0.038	0.019	0.0076	0.0016	0.0008	0.041	0.025
Renfrew	0.352	0.191	0.097	0.047	0.013	0.0048	0.226	0.160
Richmond Hill	0.163	0.095	0.053	0.027	0.0065	0.0027	0.102	0.074
Rockland	0.510	0.266	0.129	0.060	0.016	0.0056	0.328	0.221
Sarnia	0.085	0.059	0.036	0.018	0.0046	0.0020	0.049	0.046
Sault Ste. Marie	0.062	0.044	0.028	0.014	0.0033	0.0015	0.036	0.034
Schreiber	0.057	0.035	0.019	0.0079	0.0018	0.0010	0.033	0.024
Seaforth	0.087	0.062	0.039	0.020	0.0050	0.0021	0.050	0.048
Shelburne	0.104	0.072	0.044	0.023	0.0058	0.0024	0.062	0.056
Simcoe	0.141	0.084	0.047	0.023	0.0058	0.0024	0.087	0.064
Sioux Lookout	0.073	0.040	0.020	0.0078	0.0016	0.0008	0.044	0.028
Smiths Falls	0.256	0.156	0.086	0.044	0.012	0.0046	0.161	0.131
Smithville	0.296	0.144	0.067	0.030	0.0071	0.0027	0.191	0.111
Smooth Rock Falls	0.200	0.098	0.047	0.021	0.0050	0.0020	0.130	0.074
South River	0.164	0.106	0.061	0.031	0.0080	0.0034	0.100	0.085
Southampton	0.077	0.060	0.038	0.020	0.0050	0.0021	0.044	0.048
St. Catharines	0.319	0.155	0.071	0.032	0.0076	0.0028	0.206	0.121
St. Mary's	0.101	0.068	0.041	0.021	0.0052	0.0021	0.060	0.052
St. Thomas	0.117	0.073	0.042	0.021	0.0052	0.0021	0.071	0.056
Stirling	0.149	0.100	0.060	0.031	0.0078	0.0034	0.091	0.082
Stratford	0.103	0.069	0.041	0.021	0.0053	0.0022	0.061	0.054
Strathroy	0.100	0.066	0.039	0.020	0.0049	0.0021	0.059	0.051
Sturgeon Falls	0.183	0.113	0.062	0.031	0.0080	0.0032	0.113	0.089
Sudbury	0.110	0.076	0.046	0.024	0.0059	0.0025	0.065	0.059
Sundridge	0.157	0.103	0.059	0.030	0.0078	0.0032	0.095	0.082
Tavistock	0.108	0.071	0.042	0.022	0.0053	0.0022	0.065	0.055
Temagami	0.239	0.138	0.072	0.035	0.0089	0.0035	0.151	0.109
Thamesford	0.111	0.071	0.042	0.021	0.0053	0.0022	0.066	0.056
Thedford	0.089	0.062	0.038	0.019	0.0047	0.0020	0.052	0.048
Thunder Bay	0.061	0.035	0.018	0.0075	0.0016	0.0008	0.036	0.024
Tillsonburg	0.126	0.077	0.044	0.022	0.0055	0.0022	0.076	0.060
Timmins	0.125	0.075	0.043	0.021	0.0053	0.0022	0.078	0.058
Timmins (Porcupine)	0.140	0.081	0.045	0.022	0.0055	0.0022	0.088	0.063
Toronto Metropolitan Region								
Etobicoke	0.193	0.106	0.056	0.027	0.0067	0.0027	0.124	0.082
North York	0.195	0.107	0.056	0.028	0.0067	0.0027	0.125	0.083
Scarborough	0.219	0.116	0.060	0.029	0.0070	0.0028	0.140	0.093
Toronto (City Hall)	0.249	0.126	0.063	0.029	0.0071	0.0028	0.160	0.099
Trenton	0.167	0.105	0.060	0.030	0.0077	0.0032	0.104	0.086

National Building Code of Canata 2015 Volume 1, Division B

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table C-3 (Continued)

Province and Location	Seismic Data							
	$\mathrm{S}_{\mathrm{a}}(0.2)$	$\mathrm{S}_{\mathrm{a}}(0.5)$	$\mathrm{S}_{\mathrm{a}}(1.0)$	$\mathrm{S}_{\mathrm{a}}(2.0)$	$\mathrm{S}_{\mathrm{a}}(5.0)$	$\mathrm{S}_{\mathrm{a}}(10.0)$	PGA	PGV
Trout Creek	0.186	0.116	0.065	0.033	0.0084	0.0035	0.115	0.093
Uxbridge	0.139	0.089	0.052	0.027	0.0067	0.0028	0.086	0.070
Vaughan (Woodbridge)	0.167	0.096	0.053	0.026	0.0065	0.0027	0.105	0.074
Vittoria	0.139	0.083	0.046	0.023	0.0056	0.0024	0.086	0.064
Walkerton	0.083	0.062	0.039	0.021	0.0052	0.0021	0.048	0.050
Wallaceburg	0.098	0.064	0.037	0.018	0.0044	0.0018	0.058	0.048
Waterloo	0.118	0.075	0.044	0.023	0.0056	0.0022	0.072	0.059
Watford	0.095	0.064	0.038	0.019	0.0049	0.0020	0.056	0.050
Wawa	0.062	0.043	0.026	0.013	0.0030	0.0014	0.036	0.031
Welland	0.308	0.150	0.069	0.031	0.0074	0.0028	0.199	0.115
West Lorne	0.118	0.072	0.041	0.021	0.0050	0.0021	0.072	0.056
Whitby	0.203	0.112	0.059	0.029	0.0071	0.0028	0.130	0.089
Whitby (Brooklin)	0.176	0.102	0.056	0.028	0.0070	0.0028	0.111	0.080
White River	0.060	0.041	0.024	0.011	0.0025	0.0013	0.035	0.030
Wiarton	0.080	0.062	0.040	0.021	0.0052	0.0022	0.046	0.050
Windsor	0.096	0.063	0.035	0.017	0.0041	0.0017	0.057	0.048
Wingham	0.083	0.061	0.039	0.020	0.0050	0.0021	0.048	0.048
Woodstock	0.118	0.075	0.043	0.022	0.0055	0.0022	0.071	0.058
Wyoming	0.090	0.061	0.037	0.019	0.0047	0.0020	0.053	0.048
Quebec								
Acton-Vale	0.254	0.160	0.091	0.047	0.013	0.0051	0.159	0.138
Alma	0.785	0.416	0.196	0.089	0.022	0.0075	0.486	0.339
Amos	0.109	0.078	0.049	0.026	0.0067	0.0028	0.064	0.063
Asbestos	0.200	0.137	0.082	0.043	0.012	0.0049	0.123	0.118
Aylmer	0.415	0.225	0.113	0.054	0.014	0.0053	0.265	0.186
Baie-Comeau	0.425	0.219	0.107	0.051	0.013	0.0051	0.275	0.182
Baie-Saint-Paul	1.62	0.872	0.406	0.179	0.043	0.012	0.986	0.735
Beauport	0.509	0.275	0.138	0.067	0.018	0.0065	0.327	0.233
Bedford	0.358	0.204	0.107	0.053	0.014	0.0053	0.228	0.170
Beloeil	0.522	0.272	0.131	0.062	0.016	0.0059	0.333	0.225
Brome	0.236	0.152	0.087	0.045	0.012	0.0049	0.147	0.130
Brossard	0.587	0.306	0.145	0.067	0.017	0.0062	0.374	0.251
Buckingham	0.491	0.257	0.125	0.058	0.015	0.0056	0.316	0.213
Campbell's Bay	0.387	0.208	0.105	0.050	0.013	0.0051	0.248	0.173
Chambly	0.550	0.286	0.137	0.064	0.017	0.0059	0.352	0.236
Coaticook	0.193	0.129	0.077	0.040	0.011	0.0045	0.119	0.110
Contrecoeur	0.473	0.251	0.124	0.059	0.016	0.0058	0.303	0.207
Cowansville	0.273	0.168	0.094	0.048	0.013	0.0051	0.172	0.142
Deux-Montagnes	0.596	0.313	0.149	0.069	0.018	0.0062	0.380	0.258
Dolbeau	0.484	0.255	0.125	0.058	0.015	0.0055	0.308	0.211
Drummondville	0.273	0.167	0.094	0.048	0.013	0.0052	0.172	0.144
Farnham	0.369	0.208	0.109	0.054	0.015	0.0055	0.235	0.174

National Building Code of Canata 2015 Volume 1, Division B

Table C-3 (Continued)

Province and Location	Seismic Data							
	$\mathrm{S}_{\mathrm{a}}(0.2)$	$\mathrm{S}_{\mathrm{a}}(0.5)$	$\mathrm{S}_{\mathrm{a}}(1.0)$	$\mathrm{S}_{\mathrm{a}}(2.0)$	$\mathrm{S}_{\mathrm{a}}(5.0)$	$\mathrm{S}_{\mathrm{a}}(10.0)$	PGA	PGV
Fort-Coulonge	0.391	0.210	0.105	0.050	0.013	0.0051	0.251	0.174
Gagnon	0.078	0.060	0.040	0.021	0.0055	0.0022	0.045	0.048
Gaspé	0.128	0.090	0.056	0.029	0.0077	0.0032	0.076	0.074
Gatineau	0.442	0.238	0.119	0.056	0.015	0.0055	0.283	0.197
Gracefield	0.426	0.222	0.109	0.051	0.013	0.0051	0.278	0.185
Granby	0.275	0.169	0.094	0.048	0.013	0.0052	0.173	0.144
Harrington-Harbour	0.072	0.056	0.037	0.020	0.0052	0.0022	0.041	0.046
Havre-St-Pierre	0.231	0.122	0.062	0.030	0.0077	0.0031	0.148	0.097
Hemmingford	0.546	0.290	0.141	0.066	0.017	0.0060	0.347	0.239
Hull	0.432	0.234	0.117	0.056	0.015	0.0055	0.276	0.195
Iberville	0.520	0.273	0.132	0.062	0.016	0.0059	0.332	0.225
Inukjuak	0.065	0.040	0.022	0.0094	0.0021	0.0010	0.038	0.028
Joliette	0.457	0.241	0.119	0.057	0.015	0.0056	0.293	0.201
Kuujuaq	0.074	0.054	0.036	0.019	0.0049	0.0021	0.043	0.043
Kuujuarapik	0.056	0.035	0.019	0.0078	0.0016	0.0008	0.032	0.024
La Pocatière	1.51	0.817	0.384	0.170	0.041	0.012	0.927	0.690
La-Malbaie	1.73	0.954	0.454	0.203	0.049	0.014	1.04	0.809
La-Tuque	0.196	0.137	0.082	0.043	0.012	0.0049	0.120	0.119
Lac-Mégantic	0.193	0.130	0.077	0.040	0.011	0.0045	0.119	0.111
Lachute	0.518	0.274	0.133	0.063	0.016	0.0059	0.333	0.228
Lennoxville	0.187	0.129	0.077	0.041	0.011	0.0046	0.114	0.110
Léry	0.603	0.318	0.152	0.070	0.018	0.0063	0.384	0.262
Loretteville	0.502	0.268	0.134	0.065	0.017	0.0063	0.323	0.227
Louiseville	0.366	0.201	0.105	0.052	0.014	0.0055	0.234	0.170
Magog	0.196	0.133	0.079	0.042	0.011	0.0046	0.120	0.114
Malartic	0.135	0.092	0.055	0.029	0.0074	0.0031	0.081	0.074
Maniwaki	0.430	0.220	0.107	0.050	0.013	0.0049	0.282	0.184
Masson	0.498	0.261	0.127	0.059	0.016	0.0056	0.320	0.216
Matane	0.455	0.230	0.110	0.052	0.013	0.0051	0.295	0.191
Mont-Joli	0.427	0.226	0.113	0.055	0.015	0.0055	0.275	0.191
Mont-Laurier	0.419	0.212	0.103	0.049	0.013	0.0048	0.276	0.177
Montmagny	0.601	0.341	0.172	0.082	0.022	0.0075	0.382	0.286
Montréal Region								
Beaconsfield	0.602	0.317	0.152	0.070	0.018	0.0063	0.383	0.260
Dorval	0.600	0.316	0.151	0.069	0.018	0.0062	0.382	0.259
Laval	0.595	0.311	0.148	0.068	0.018	0.0062	0.379	0.256
Montréal (City Hall)	0.595	0.311	0.148	0.068	0.018	0.0062	0.379	0.255
Montréal-Est	0.586	0.305	0.145	0.067	0.017	0.0062	0.374	0.250
Montréal-Nord	0.593	0.309	0.147	0.068	0.017	0.0062	0.378	0.254
Outremont	0.597	0.313	0.149	0.068	0.018	0.0062	0.380	0.256
Pierrefonds	0.599	0.315	0.151	0.069	0.018	0.0062	0.382	0.259
St-Lambert	0.590	0.307	0.146	0.067	0.017	0.0062	0.376	0.252

Table C-3 (Continued)

Province and Location	Seismic Data							
	$\mathrm{S}_{\mathrm{a}}(0.2)$	$\mathrm{S}_{\mathrm{a}}(0.5)$	$\mathrm{S}_{\mathrm{a}}(1.0)$	$\mathrm{S}_{\mathrm{a}}(2.0)$	$\mathrm{S}_{\mathrm{a}}(5.0)$	$\mathrm{S}_{\mathrm{a}}(10.0)$	PGA	PGV
St-Laurent	0.598	0.314	0.149	0.069	0.018	0.0062	0.381	0.258
Ste-Anne-de-Bellevue	0.602	0.317	0.152	0.070	0.018	0.0063	0.383	0.262
Verdun	0.596	0.312	0.149	0.068	0.018	0.0062	0.380	0.256
Nicolet (Gentilly)	0.364	0.201	0.106	0.052	0.015	0.0055	0.233	0.170
Nitchequon	0.062	0.047	0.031	0.017	0.0041	0.0018	0.035	0.038
Noranda	0.132	0.088	0.052	0.027	0.0068	0.0028	0.080	0.070
Percé	0.114	0.084	0.053	0.029	0.0074	0.0032	0.067	0.068
Pincourt	0.602	0.318	0.152	0.070	0.018	0.0063	0.384	0.262
Plessisville	0.250	0.160	0.092	0.048	0.013	0.0052	0.157	0.140
Port-Cartier	0.323	0.169	0.084	0.040	0.010	0.0039	0.210	0.137
Puvirnituq	0.108	0.058	0.029	0.012	0.0025	0.0011	0.068	0.043
Québec City Region								
Ancienne-Lorette	0.487	0.258	0.130	0.062	0.017	0.0062	0.314	0.220
Lévis	0.493	0.265	0.134	0.065	0.017	0.0063	0.317	0.225
Québec	0.493	0.265	0.133	0.064	0.017	0.0063	0.318	0.225
Sillery	0.486	0.260	0.131	0.063	0.017	0.0062	0.313	0.221
Ste-Foy	0.488	0.261	0.131	0.063	0.017	0.0062	0.315	0.221
Richmond	0.208	0.140	0.083	0.044	0.012	0.0049	0.128	0.121
Rimouski	0.408	0.224	0.116	0.056	0.015	0.0056	0.262	0.192
Rivière-du-Loup	1.16	0.616	0.288	0.129	0.032	0.0097	0.724	0.517
Roberval	0.688	0.353	0.164	0.074	0.019	0.0065	0.430	0.287
Rock-Island	0.199	0.133	0.078	0.041	0.011	0.0046	0.123	0.113
Rosemère	0.591	0.309	0.147	0.068	0.017	0.0062	0.377	0.255
Rouyn	0.134	0.089	0.052	0.027	0.0068	0.0028	0.081	0.070
Saguenay	0.791	0.425	0.204	0.095	0.024	0.0080	0.491	0.353
Saguenay (Bagotville)	0.801	0.434	0.210	0.098	0.025	0.0083	0.498	0.362
Saguenay (Jonquière)	0.798	0.428	0.206	0.095	0.024	0.0080	0.495	0.354
Saguenay (Kenogami)	0.799	0.428	0.206	0.095	0.024	0.0080	0.496	0.354
Saint-Eustache	0.593	0.311	0.149	0.068	0.018	0.0062	0.378	0.256
Saint-Jean-sur-Richelieu	0.522	0.274	0.133	0.062	0.016	0.0059	0.333	0.227
Salaberry-de-Valleyfield	0.602	0.318	0.152	0.070	0.018	0.0063	0.384	0.262
Schefferville	0.059	0.042	0.027	0.014	0.0033	0.0015	0.034	0.031
Senneterre	0.114	0.083	0.052	0.028	0.0071	0.0031	0.067	0.067
Sept-Îles	0.295	0.156	0.078	0.037	0.0095	0.0038	0.191	0.126
Shawinigan	0.306	0.179	0.098	0.049	0.014	0.0053	0.195	0.154
Shawville	0.386	0.208	0.105	0.050	0.013	0.0051	0.248	0.173
Sherbrooke	0.187	0.129	0.078	0.041	0.011	0.0046	0.115	0.111
Sorel	0.406	0.220	0.113	0.055	0.015	0.0056	0.259	0.184
St-Félicien	0.488	0.259	0.127	0.059	0.016	0.0056	0.309	0.212
St-Georges-de-Cacouna	0.857	0.478	0.234	0.109	0.028	0.0090	0.533	0.396
St-Hubert	0.581	0.302	0.144	0.066	0.017	0.0060	0.371	0.248
Saint-Hubert-de-Rivière-du-Loup	0.468	0.279	0.147	0.073	0.020	0.0069	0.298	0.237

National Building Code of Canata 2015 Volume 1, Division B

Table C-3 (Continued)

Province and Location	Seismic Data							
	$\mathrm{S}_{\mathrm{a}}(0.2)$	$\mathrm{S}_{\mathrm{a}}(0.5)$	$\mathrm{S}_{\mathrm{a}}(1.0)$	$\mathrm{S}_{\mathrm{a}}(2.0)$	$\mathrm{S}_{\mathrm{a}}(5.0)$	$\mathrm{S}_{\mathrm{a}}(10.0)$	PGA	PGV
St-Hyacinthe	0.369	0.208	0.109	0.054	0.015	0.0055	0.235	0.174
St-Jérôme	0.539	0.282	0.135	0.063	0.017	0.0059	0.346	0.233
St-Jovite	0.428	0.222	0.110	0.052	0.014	0.0052	0.281	0.186
St-Lazare-Hudson	0.597	0.315	0.151	0.070	0.018	0.0062	0.380	0.259
St-Nicolas	0.466	0.248	0.125	0.060	0.016	0.0060	0.301	0.211
Ste-Agathe-des-Monts	0.431	0.226	0.112	0.054	0.014	0.0053	0.282	0.191
Sutton	0.243	0.154	0.088	0.045	0.012	0.0049	0.152	0.131
Tadoussac	0.694	0.399	0.202	0.097	0.026	0.0084	0.434	0.335
Témiscaming	0.820	0.411	0.181	0.075	0.017	0.0053	0.516	0.329
Terrebonne	0.584	0.304	0.144	0.067	0.017	0.0060	0.373	0.250
Thetford Mines	0.207	0.142	0.084	0.044	0.012	0.0049	0.127	0.123
Thurso	0.492	0.258	0.126	0.059	0.016	0.0056	0.318	0.215
Trois-Rivières	0.366	0.200	0.105	0.052	0.014	0.0055	0.234	0.170
Val-d'Or	0.135	0.093	0.056	0.029	0.0076	0.0032	0.081	0.074
Varennes	0.571	0.296	0.141	0.065	0.017	0.0060	0.365	0.243
Verchères	0.537	0.278	0.134	0.062	0.016	0.0059	0.343	0.229
Victoriaville	0.233	0.152	0.089	0.046	0.013	0.0051	0.145	0.133
Ville-Marie	0.262	0.148	0.076	0.037	0.0093	0.0037	0.166	0.117
Wakefield	0.409	0.222	0.111	0.054	0.014	0.0053	0.262	0.185
Waterloo	0.232	0.150	0.087	0.045	0.012	0.0049	0.144	0.129
Windsor	0.194	0.134	0.080	0.042	0.012	0.0048	0.119	0.115
New Brunswick								
Alma	0.144	0.096	0.058	0.030	0.0078	0.0034	0.088	0.079
Bathurst	0.217	0.127	0.071	0.036	0.0090	0.0038	0.138	0.105
Campbellton	0.210	0.133	0.076	0.039	0.010	0.0042	0.132	0.113
Edmundston	0.231	0.153	0.089	0.046	0.012	0.0049	0.145	0.134
Fredericton	0.210	0.127	0.071	0.037	0.0093	0.0039	0.133	0.105
Gagetown	0.195	0.119	0.068	0.035	0.0089	0.0038	0.122	0.098
Grand Falls	0.254	0.153	0.085	0.043	0.011	0.0046	0.162	0.131
Miramichi	0.214	0.125	0.069	0.035	0.0087	0.0037	0.136	0.102
Moncton	0.158	0.100	0.059	0.031	0.0078	0.0034	0.098	0.083
Oromocto	0.209	0.126	0.071	0.036	0.0092	0.0039	0.132	0.103
Sackville	0.140	0.093	0.057	0.030	0.0078	0.0034	0.085	0.079
Saint Andrews	0.874	0.436	0.189	0.077	0.017	0.0053	0.544	0.345
Saint George	0.578	0.298	0.135	0.058	0.014	0.0048	0.367	0.232
Saint John	0.199	0.121	0.068	0.035	0.0089	0.0037	0.125	0.097
Shippagan	0.143	0.096	0.058	0.030	0.0078	0.0034	0.087	0.079
St. Stephen	0.781	0.380	0.163	0.067	0.015	0.0051	0.491	0.302
Woodstock	0.206	0.129	0.074	0.038	0.0099	0.0042	0.130	0.109
Nova Scotia								
Amherst	0.130	0.089	0.055	0.030	0.0078	0.0034	0.078	0.074
Antigonish	0.098	0.076	0.050	0.028	0.0073	0.0031	0.057	0.064

National Building Code of Canata 2015 Volume 1, Division B

Table C-3 (Continued)

Province and Location	Seismic Data							
	$\mathrm{S}_{\mathrm{a}}(0.2)$	$\mathrm{S}_{\mathrm{a}}(0.5)$	$\mathrm{S}_{\mathrm{a}}(1.0)$	$\mathrm{S}_{\mathrm{a}}(2.0)$	$\mathrm{S}_{\mathrm{a}}(5.0)$	$\mathrm{S}_{\mathrm{a}}(10.0)$	PGA	PGV
Bridgewater	0.117	0.086	0.054	0.029	0.0078	0.0034	0.068	0.071
Canso	0.114	0.085	0.054	0.029	0.0078	0.0034	0.066	0.071
Debert	0.107	0.080	0.052	0.029	0.0076	0.0032	0.062	0.068
Digby	0.164	0.105	0.061	0.032	0.0083	0.0035	0.101	0.085
Greenwood (CFB)	0.128	0.090	0.055	0.029	0.0077	0.0032	0.076	0.074
Halifax Region								
Dartmouth	0.110	0.082	0.053	0.029	0.0076	0.0032	0.064	0.068
Halifax	0.110	0.082	0.053	0.029	0.0076	0.0032	0.064	0.068
Kentville	0.120	0.087	0.055	0.030	0.0078	0.0034	0.071	0.072
Liverpool	0.120	0.086	0.054	0.029	0.0076	0.0032	0.070	0.070
Lockeport	0.123	0.087	0.054	0.028	0.0074	0.0031	0.073	0.071
Louisburg	0.119	0.089	0.056	0.030	0.0080	0.0035	0.069	0.074
Lunenburg	0.115	0.085	0.054	0.029	0.0078	0.0034	0.067	0.070
New Glasgow	0.099	0.077	0.051	0.028	0.0074	0.0032	0.057	0.064
North Sydney	0.105	0.081	0.053	0.029	0.0076	0.0032	0.061	0.068
Pictou	0.098	0.076	0.050	0.028	0.0074	0.0031	0.057	0.064
Port Hawkesbury	0.102	0.079	0.052	0.028	0.0076	0.0032	0.059	0.066
Springhill	0.118	0.085	0.054	0.029	0.0077	0.0034	0.070	0.071
Stewiacke	0.107	0.081	0.053	0.029	0.0077	0.0032	0.062	0.068
Sydney	0.108	0.083	0.054	0.029	0.0077	0.0034	0.063	0.070
Tatamagouche	0.103	0.079	0.052	0.028	0.0076	0.0032	0.061	0.066
Truro	0.105	0.080	0.052	0.029	0.0076	0.0032	0.061	0.067
Wolfville	0.118	0.086	0.055	0.030	0.0078	0.0034	0.069	0.071
Yarmouth	0.137	0.094	0.057	0.030	0.0078	0.0034	0.082	0.075
Prince Edward Island								
Charlottetown	0.103	0.077	0.051	0.028	0.0074	0.0032	0.060	0.066
Souris	0.091	0.073	0.049	0.027	0.0071	0.0031	0.052	0.062
Summerside	0.133	0.089	0.055	0.029	0.0076	0.0032	0.082	0.075
Tignish	0.135	0.090	0.056	0.030	0.0076	0.0032	0.083	0.076
Newfoundland								
Argentia	0.098	0.079	0.052	0.029	0.0076	0.0032	0.056	0.066
Bonavista	0.083	0.067	0.045	0.025	0.0065	0.0028	0.047	0.056
Buchans	0.077	0.064	0.044	0.024	0.0064	0.0028	0.043	0.054
Cape Harrison	0.125	0.087	0.052	0.028	0.0071	0.0031	0.074	0.068
Cape Race	0.108	0.085	0.055	0.030	0.0080	0.0034	0.062	0.071
Channel-Port aux Basques	0.088	0.071	0.048	0.026	0.0068	0.0030	0.050	0.059
Corner Brook	0.074	0.062	0.043	0.024	0.0062	0.0027	0.042	0.052
Gander	0.077	0.064	0.044	0.024	0.0064	0.0027	0.044	0.054
Grand Bank	0.115	0.090	0.057	0.031	0.0081	0.0035	0.067	0.074
Grand Falls	0.076	0.064	0.044	0.024	0.0064	0.0027	0.043	0.054
Happy Valley-Goose Bay	0.067	0.050	0.032	0.017	0.0044	0.0018	0.039	0.040
Labrador City	0.067	0.052	0.035	0.019	0.0047	0.0020	0.038	0.042

National Building Code of Canata 2015 Volume 1, Division B

Table C-3 (Continued)

Province and Location	Seismic Data							
	$\mathrm{S}_{\mathrm{a}}(0.2)$	$\mathrm{S}_{\mathrm{a}}(0.5)$	$\mathrm{S}_{\mathrm{a}}(1.0)$	$\mathrm{S}_{\mathrm{a}}(2.0)$	$\mathrm{S}_{\mathrm{a}}(5.0)$	$\mathrm{S}_{\mathrm{a}}(10.0)$	PGA	PGV
St. Anthony	0.073	0.057	0.038	0.021	0.0053	0.0022	0.041	0.047
St. John's	0.090	0.073	0.049	0.027	0.0071	0.0031	0.052	0.062
Stephenville	0.077	0.064	0.044	0.025	0.0064	0.0028	0.044	0.054
Twin Falls	0.064	0.047	0.030	0.016	0.0040	0.0017	0.037	0.036
Wabana	0.089	0.072	0.048	0.027	0.0071	0.0031	0.051	0.060
Wabush	0.067	0.052	0.035	0.019	0.0047	0.0020	0.039	0.042
Yukon								
Aishinik	0.446	0.364	0.233	0.122	0.043	0.016	0.218	0.255
Dawson	0.396	0.277	0.168	0.087	0.030	0.012	0.185	0.174
Destruction Bay ${ }^{(1)}$	1.54	1.15	0.666	0.330	0.119	0.038	0.693	0.816
Faro	0.271	0.189	0.122	0.067	0.023	0.0091	0.126	0.125
Haines Junction	0.973	0.691	0.398	0.193	0.066	0.022	0.467	0.452
Snag	0.502	0.394	0.254	0.138	0.052	0.019	0.242	0.294
Teslin	0.284	0.202	0.129	0.073	0.025	0.0096	0.133	0.138
Watson Lake	0.304	0.214	0.125	0.061	0.020	0.0077	0.142	0.123
Whitehorse	0.334	0.258	0.170	0.094	0.033	0.012	0.154	0.184
Northwest Territories								
Aklavik	0.475	0.321	0.183	0.089	0.029	0.011	0.225	0.199
Echo Bay / Port Radium	0.052	0.038	0.031	0.020	0.0068	0.0031	0.030	0.032
Fort Good Hope	0.257	0.197	0.128	0.068	0.024	0.0091	0.119	0.127
Fort McPherson	0.476	0.354	0.211	0.103	0.035	0.013	0.225	0.223
Fort Providence	0.055	0.044	0.037	0.023	0.0077	0.0035	0.031	0.038
Fort Resolution	0.052	0.032	0.017	0.0072	0.0015	0.0008	0.030	0.021
Fort Simpson	0.154	0.134	0.090	0.047	0.016	0.0062	0.072	0.083
Fort Smith	0.052	0.031	0.016	0.0065	0.0013	0.0007	0.030	0.021
Hay River	0.053	0.034	0.025	0.016	0.0056	0.0025	0.031	0.028
Holman/Ulukhaqtuuq	0.057	0.040	0.025	0.012	0.0031	0.0014	0.033	0.030
Inuvik	0.308	0.223	0.139	0.072	0.025	0.0094	0.145	0.149
Mould Bay	0.21	0.120	0.070	0.037	0.010	0.0041	0.136	0.104
Norman Wells	0.688	0.445	0.238	0.105	0.031	0.011	0.340	0.256
Rae-Edzo	0.052	0.036	0.029	0.019	0.0065	0.0030	0.030	0.031
Tungsten	0.325	0.238	0.143	0.070	0.023	0.0089	0.153	0.145
Wrigley	0.653	0.421	0.224	0.099	0.029	0.010	0.319	0.241
Yellowknife	0.052	0.032	0.017	0.0070	0.0015	0.0008	0.030	0.021
Nunavut								
Alert	0.145	0.083	0.044	0.021	0.0049	0.0020	0.091	0.062
Arctic Bay	0.111	0.080	0.052	0.028	0.0071	0.0031	0.066	0.066
Arviat / Eskimo Point	0.054	0.037	0.022	0.0097	0.0021	0.0011	0.031	0.025
Baker Lake	0.068	0.048	0.029	0.014	0.0031	0.0014	0.039	0.035
Cambridge Bay/Iqaluktuuttiaq	0.059	0.041	0.025	0.012	0.0025	0.0013	0.034	0.030
Chesterfield Inlet/gluligaarjuk	0.081	0.054	0.031	0.015	0.0034	0.0015	0.047	0.042
Clyde River/Kanngiqtugaapik	0.306	0.186	0.104	0.053	0.015	0.0056	0.195	0.162

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

6.0 - CANADIAN PRESCRIPTIVE ENGINEERING

Table C-3 (Continued)

Province and Location	Seismic Data							
	$\mathrm{S}_{\mathrm{a}}(0.2)$	$\mathrm{S}_{\mathrm{a}}(0.5)$	$\mathrm{S}_{\mathrm{a}}(1.0)$	$\mathrm{S}_{\mathrm{a}}(2.0)$	$\mathrm{S}_{\mathrm{a}}(5.0)$	$\mathrm{S}_{\mathrm{a}}(10.0)$	PGA	PGV
Coppermine (Kugluktuk)	0.053	0.031	0.016	0.0066	0.0013	0.0007	0.031	0.021
Coral Harbour /Salliq	0.103	0.064	0.035	0.016	0.0037	0.0015	0.062	0.048
Eureka	0.173	0.106	0.065	0.035	0.010	0.0040	0.110	0.093
Iqaluit	0.087	0.065	0.043	0.023	0.0058	0.0025	0.051	0.052
Isachsen	0.256	0.171	0.102	0.055	0.016	0.0061	0.162	0.158
Nottingham Island	0.109	0.060	0.031	0.014	0.0030	0.0014	0.068	0.044
Rankin Inlet (Kangiqiniq)	0.064	0.045	0.027	0.013	0.0028	0.0014	0.036	0.034
Resolute	0.194	0.105	0.057	0.028	0.0069	0.0030	0.124	0.084
Resolution Island	0.203	0.123	0.069	0.035	0.0092	0.0038	0.128	0.102

National Building Code of Canata 2015 Volume 1, Division B

This page left intentionally blank.

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

## The Insulating Concrete Forms Manufacturers Association Prescriptive ICF Design for Part 9 Structures in Canarla

# ICFMA <br> INSULATING CONCRETE FORMS MANUFACTURERS ASSOCIATION 

## MISSION

The mission of the ICFMA is to promote and enhance the social, environmental and economic value of insulating concrete forms in the North American marketplace.

LEARN MORE ABOUT ICFS AT ICF-MA.ORG
7.0 - CANADIAN CODE REPORTS ..... 7-1
7.1 - NON-COMBUSTIBLE CONSTRUCTION (NBCC) ..... 7-3
7.2 - VAPOUR BARRIER (NBCC) ..... 7-4
7.3 - LEED V4 EVALUATION ..... 7-7
7.4 - QAI FIRE RESISTANCE RATING ..... 7-9
7.5 - QAI LISTING REPORT ..... 7-10

## 7.1 - NON-COMBUSTIBLE CONSTRUCTION (NBCC)

ntertek Testing Services, an independent, nationally accredited testing agency, conducted a fire evaluation and determined the products listed below meets clause 3.2.3.8 when used with Logix for exterior walls for building over 3 storeys.

Copies of the evaluation reports can be downloaded at www.logixicf.com.

Products evaluated:

- Dryvit Exsulation 2000 System
- Dryvit Infinity System
- Dryvit Exsulation 2000 System
- Dryvit Fedderlite 2000 System
- Dryvit Outsulation System
- Dryvit Outsulation MD System
- Sto EIFS
- Sto Signature System
- Sto CLASSIC NExT
- Sto CLASSIC NExT NC
- Sto SIGNATURE SYSTEM NC
- Standard ADEX System
- Standard ADEX RF System
- Durock ICF Finish System


## 7.2 - VAPOUR BARRIER (NBCC)

## 1 Introduction

Intertek Testing Services NA Ltd. (Intertek) has conducted an engineering evaluation for Logix Insulated Concrete Forms Ltd., on Logix ICF, to evaluate the vapor permeance properties of the product. The evaluation was conducted to determine if Logix ICF meets the 2005 National Building Code (NBC) for use as a vapor barrier.

## 2 Sample Description

Logix ICF consists of rigid interlocking expanded polystyrene (EPS) foam plastic boards that serve as permanent formwork for reinforced concrete, exterior and interior walls, and foundation and retaining walls.

## 3 Reference Documents

- 2005 National Building Code (NBC)
- ASTM E96/96M-05, Standard Test Methods for Water Vapor Transmission of Materials (ASTM E96)
- Intertek Test Report 3048347 dated October 14, 2003
- Intertek Letter dated January 6, 2005


## 4 Evaluation Method

Vapor barrier properties and installation are described in detail in Section 5.5.1.2 of the 2005 NBC. These details are summarized below:

1) The vapor barrier shall have sufficiently low permeance and shall be positioned in the building component or assembly so as to
a) minimize moisture transfer by diffusion, to surfaces within the assembly that would be cold enough to cause condensation at the design temperature and humidity conditions, or
b) reduce moisture transfer by diffusion, to surfaces within the assembly that would be cold enough to cause condensation at the design temperature and humidity conditions, to a rate that will not allow sufficient accumulation of moisture to cause deterioration or otherwise adversely affect any of
i. the health or safety of building users,
ii. the intended use of the building, or
iii. the operation of building services.
2) Coatings applied to gypsum wallboard to provide required resistance to vapour diffusion shall conform to the requirements of Sentence (1) when tested in accordance with CAN/CGSB-1.501-M, "Method for Permeance of Coated Wallboard."

## 7.2 - VAPOUR BARRIER (NBCC) continued

Logic Insulated Concrete Forms Ltd.
January 30, 2007
Project No. 3109888-R1
Revised: January 31, 2007
Page 3 of 4
3) Coatings applied to materials other than gypsum wallboard to provide required resistance to vapor diffusion shall conform to the requirements of Sentence (1) when tested in accordance with ASTM E96, "Water Vapor Transmission of Materials" by the desiccant method (dry cup).

Vapor Barrier materials are further discussed in Section 9.25.4.2 of the 2005 NBC under Sentence (1) which is summarized below:

1) Vapor barriers shall have a permeance not greater than $60 \mathrm{ng} / \mathrm{Pa}-\mathrm{s}-\mathrm{m} 2$ measured in accordance with ASTM E96, "Water Vapor Transmission of Materials" by the desiccant method (dry cup).

Logic ICF fall under Sentence (3) of Section 5.5.1.2 of the 2005 NBC and have been tested by Intertek in accordance with ASTM E96 using the desiccant method. The results were summarized in Intertek Test Report 3048347 dated October 14, 2003 and showed that a 1-inch Logix ICF had a water permeance of $100 \mathrm{ng} / \mathrm{Pa}-\mathrm{s}-\mathrm{m}^{2}$. In the field, Logic ICF is installed with a 2.75 -inch thickness and thus the calculated water permeance at this thickness is $36 \mathrm{ng} / \mathrm{Pa}-\mathrm{s}-\mathrm{m}^{2}$. The detailed calculations are shown in Intertek Letter dated January 5, 2005. Based on these results, Logic ICF meets the requirements of Section 9.25.4.2, Sentence (1) of the 2005 NBC and can be installed without the use of a vapor barrier.

## 5 Conclusion

Intertek has conducted an engineering evaluation for Logic Insulated Concrete Forms Ltd., on Logic ICF, to determine if the Logic ICF meets the 2005 National Building Code as a vapor barrier. The analysis, per Section 4 above, showed that Logix ICF meets the water permeance requirements and can be installed without a vapor barrier.

INTERTEK TESTING SERVICES NA LTD.

Reported by:


Matt Lansdowne, EIT
Engineer, Building Products

Reviewed by:


Kail Kooner, EIT
Team Leader, Engineering Services Canada

Testing everywhere for markets anywhere.

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

All documents are downloadable at logixicf.com

## 7.2 - VAPOUR BARRIER (NBCC) continued

## REVISION SUMMARY

DATE	SUMMARY
February 1, 2007	Added additional reference to 2005 NBC and maximum permeance   requirements

## 7.3 - LEED V4 EVALUATION

## TECHNICAL BULLETIN LEED v4 BD+C for Logix <br> No. 37-053014 <br> (US \& Canada)

POTENTIAL LEED POINTS CONTRIBUTION WITH LOGIXㅗ

Sustainable Sites	Applicable   Building   Types	Maximum Points   Contribution	Comments
Protect or Restore Habitat	All	2 (1 for healthcare)	Although the points may not apply to LOGIX,   wall bracing for LOGIX is one of a combination of   actions that, together with other procedures, can   result in proper protection or restoration   of natural areas around the job site.   LOGIX is typically placed within the building   perimeter. This type of assembly avoids   disturbance to existing natural areas and keeps   construction activity close to the building   perimeter.


Energy \& Atmosphere	Applicable   Building   Types	Maximum Points   Contribution	Comments
Minimum Energy   Performance	All	$\mathrm{n} / \mathrm{a}$   (required)	The continuous insulation and air barrier   properties of Logix can help meet required   minimum levels of efficiency for the building.
Optimize Energy   Performance	All	18 except Schools   and Healthcare (16   for Schools, 20 for   Healthcare)	The continuous insulation and air barrier   properties of Logix can help achieve the levels   of energy performance that go beyond the   prerequisite standard.


Material \& Resources	$\begin{array}{c}\text { Applicable } \\ \text { Building } \\ \text { Types }\end{array}$	$\begin{array}{c}\text { Maximum Points } \\ \text { Contribution }\end{array}$	Comments		
$\begin{array}{l}\text { Construction and } \\ \text { Demolition Waste } \\ \text { Management Planning }\end{array}$	All	$\begin{array}{c}\text { n/a } \\ \text { (required) }\end{array}$	$\begin{array}{l}\text { Logix products produce little waste compared to } \\ \text { wood, which should ease the waste management } \\ \text { planning. In addition, EPS recycling programs can } \\ \text { be implemented as part of the waste management } \\ \text { planning. }\end{array}$		
$\begin{array}{l}\text { Building Life-cycle Impact } \\ \text { Reduction }\end{array}$	All	3	$\begin{array}{l}\text { Can help contribute 3 points under "Option 4. } \\ \text { Whole-Building-Life-Cycle Assessment." } \\ \text { The high energy efficient walls Logix creates } \\ \text { contributes to the reduction of a building's impact } \\ \text { on global warming. }\end{array}$		
$\begin{array}{l}\text { Building Product Disclosure } \\ \text { \& Optimization - } \\ \text { Environmental Product } \\ \text { Declarations. }\end{array}$	All	1	$\begin{array}{l}\text { Can help contribute 1 point under "Option 1. } \\ \text { Environmental Product Declaration (EPD)." Logix } \\ \text { uses EPS which carries EPD documents, which } \\ \text { conform to ISO 14025. }\end{array}$		
$\begin{array}{l}\text { Building Product Disclosure } \\ \text { \& Optimization - Sourcing } \\ \text { of Raw Materials. }\end{array}$	All	2	$\begin{array}{l}\text { Logix products are made with up to 10\% recycled } \\ \text { pre-consumer EPS. }\end{array}$		
$\begin{array}{l}\text { Building Product Disclosure } \\ \text { \& Optimization - Material } \\ \text { Ingredients. }\end{array}$	All	1	$\begin{array}{l}\text { Contributes to 1 point under "Option 3. Product } \\ \text { Manufacturer Supply Chain Optimization." } \\ \text { Logix products are certified under a third party }\end{array}$		
program with Quality Auditing Institute (QAI).				$]$	
:---					

## 7.3 - LEED V4 EVALUATION continued

$\begin{aligned} \text { TECHNICAL BULLETIN } & \text { LEED v4 BD+C for Logix } \\ \text { No. } 37-053014 & \text { (US \& Canada) }\end{aligned}$

Material \& Resources	Applicable   Building   Types	Maximum Points   Contribution	Comments
Construction \& Demolition   Waste Management	All	2	Programs can be put in place to recycle EPS from   job sites. EPS is also light in weight, and produces   less waste than wood products.


Indoor Environmental Quality	Applicable Building Types	Maximum Points Contribution	Comments
Minimum Acoustic Performance	Schools	N/a (required)	Logix can help increase the acoustical performance of wall and ceiling assemblies.
Low-emitting Materials	All	3	Logix Platinum is made with BASF Neopor, which is Greenguard Certified. In addition, the EPS used for Logix has been tested to show no signs of harmful emissions.
Thermal Comfort	All except Core \& Shell	1	Logix offers continuous insulation in wall and ceiling assemblies, and is made with BASF Neopor, which offer the highest thermal value of any EPS material.
Acoustic Performance	All except Core \& Shell	1	Logix can contribute to the STC ratings of wall and ceiling assemblies. STC testing of various wall assemblies have been conducted with Logix.

${ }^{1}$ The total LEED point contribution from Logix is a best estimate based on available information and test data. The actual LEED point contribution may change based on project specifics, and should be determined by a LEED Accredited Professional for each project seeking LEED accreditation.

For more information about the LEED green building rating system visit www.usgbc.org or www.cagbc.org.

## 7.4 - QAI FIRE RESISTANCE RATING

Standards: ASTM E119-"Standard Test M ethods for Fire Tests of Building Construction and M aterials";

CAN/ULC S101 - "Standard M ethods of Fire Endurance Tests of Building Construction and M aterials"

	Rating	Product   Density	Maximum   Cavity Width	Maximum Panel   Thickness
ASTM E119/	2-Hour	1.35 pcf	4 inches	$23 / 4$ inches
CAN/ULC 5701	3-Hour	1.35 pcf	$61 / 8$ inches	$23 / 4$ inches
Ratings:	4-Hour	1.35 pcf	8 inches	$23 / 4$ inches

Structural Rating at above durations for concrete wall at structural design load.


Assembly Details:

1. Insulated Concrete Forms - Standard forms made of two $16^{\prime \prime} \times 48^{\prime \prime}$ by $2.75^{\prime \prime}$ thick expanded polystyrene (EPS) block panels connected by polypropylene detail webs at 8" O.C. The minimum width of the cavity is $4^{\prime \prime}$ as shown in the ratings table above (rating depends on cavity thickness).
2. Reinforcing Steel - No. 4 steel reinforcing bars placed horizontally in each course and vertically at 16" O.C. along centerline of wall cavity thickness.
3. Sand-Limestone Concrete - 145 +/- 5 pcf density, 2900 psi nominal compressive strength concrete.
4. Gypsum W allboard - M in. $1 / 2^{\prime \prime}$ thick, 1.5 psf minimum density, 48 " wide gypsum wallboard fastened to flanges of polypropylene webs with $2^{\prime \prime}$ long drywall screws at $16^{\prime \prime}$ horizontally and vertically. Joints covered with joint compound, covered with joint tape, and covered with an additional coat of joint compound. Screw heads covered with joint compound.

## 7.5 - QAI LISTING REPORT

## BUILDING PRODUCTS LISTING PROGRAM

Class:	Insulated Concrete Forms (ICF)
Customer:	LOGIX Insulated Concrete Forms, Ltd.
Location:	9242 Pinetree Place, Whistler, BC, Canada, V0N 1B9
Website:	www.LOGIXicf.com
Listing No.	B1031-1
Effective Date:	September 27, 2010
Last Revised:	May 27, 2014
Expires:	N/A
Product:	LOGIX Insulated Concrete Forms (ICF)
Standard(s):	ASTM E2634 "Standard Specification for Flat Wall Insulating Concrete Form (ICF) Systems".
	CAN/ULC S717.1 "Standard for Flat Wall Insulating Concrete Form (ICF) Systems".
	CAN/ULC S701 "Thermal Insulation, Polystyrene, Boards and Pipe Covering".
	CAN/ULC S 102.2 "Standard Method of Test for Surface Burning Characteristics of Flooring, Floor Coverings, and Miscellaneous Materials and Assemblies".
	ASTM C578 "Standard Specification for Rigid, Cellular Polystyrene Thermal Insulation".
	ASTM E84 - "Standard Test Method for Surface Burning Characteristics of Building Materials".

UBC 26-3 "Room Fire Test Standard For Interior of Foam Plastic Systems".
CAN/ULC-S101 "Standard Methods of Fire Endurance Tests of Building Construction and Materials".

ASTM E119 / ANSI / UL 263 "Standard Test Methods for Fire Tests of Building Construction and Materials".

Label: Product is marked with labels supplied by LOGIX Insulated Concrete Forms, Ltd. The label includes the manufacturer's name, trademark, or other recognized symbol of identification, the product model designation, month and year of manufacture or equivalent, QAI logo with the 'US' and "C" identifier, and CAN/ULC S701 Type 2, ASTM C578 Type II, ASTM E84 FSI and SDI Rating, and CAN/ULC S102.2 FSI and SDI Rating. Labels are applied to palletized finished products to ensure visibility on the jobsite.

Ratings: The following outlines LOGIX ICF test results determined in accordance with the noted standards.

| Effective Date: September 15, 2006 | QM0604 Draft Listing Page |
| :--- | :---: | :---: |
| Revision 3 |  |

Revision Date: April 17, 2014 Revision 3

## 7.5 - QAI LISTING REPORT continued

LOGIX ICF Fastener Resistance Ratings

FASTENER	ALLOWABLE WITHDRAWAL		ALLOWABLE LATERAL   SHEAR	
	lbs	$\mathbf{k g}$	$\mathbf{l b s}$	$\mathbf{k g}$
\#ength Coarse   Lenread Drywall   Screw	23	10	59	26

LOGIX ICF Type 2 Specifications per CAN/ULC S701

PROPERTY	LOGIX SPECIFICATION
Thermal Resistance   $\mathrm{m}^{2} *^{\circ} \mathrm{C} / \mathrm{W}$ at 25 mm Thickness	Minimum 0.70
Water Vapour Permeance   $\mathrm{Ng} / \mathrm{Pa}^{*} \mathrm{~s}^{*} \mathrm{~m}^{2}$ at 25 mm Thickness   \% Linear Shanger Stabity	Maximum 200
Flexural Strength   kPa	Maximum 1.5
Water Absorption   \% Volume	Minimum 240
Compressive Strength   kPa at $10 \%$ Deformation	Maximum 4.0
Limiting Oxygen Index   $\%$	Minimum 110

LOGIX ICF Type II Specifications per ASTM C578

PROPERTY	LOGIX SPECIFICATION
Compressive Resistance   psi at Yield or 10\% Deformation	Minimum 15.0
Thermal Resistance   $\mathrm{F}^{2} \mathrm{ft}^{2} \mathrm{~h} /$ Btu at 1.00 Inch Thickness	Minimum 4.0
Flexural Strength   psi	Minimum 35.0
Water Vapor Permeance   Perms at 1.00 Inch Thickness	Maximum 3.5
Water Absorption   \% Volume	Maximum 3.0
Dimensional Stability   \% Change Dimensions	Maximum 2.0
Oxygen Index   \% Volume	Minimum 24.0
Density   lbs/ft ${ }^{3}$	Minimum 1.35

LOGIX ICF Surface Burning Characteristics per CAN/ULC S102.2

LOGIX   COMPONENT	DENSITY	MAXIMUM   THICKNESS	FLAME   SPREAD   INDEX (FSI)	SMOKE   DEVELOPED   INDEX (SDI)
Expanded   Polystyrene   (EPS Panel)	$22-29$	100 mm   Maximum	$\leq 210$	$\geq 500$

LOGIX ICF Surface Burning Characteristics per ASTM E84 ${ }^{1}$

LOGIX	DENSITY	MAXIMUM	FLAME	SMOKE

## 7.5 - QAI LISTING REPORT continued

COMPONENT	THICKNESS	SPREAD   INDEX (FSI)	DEVELOPED   INDEX (SDI)	
Expanded   Polystyrene   (EPS Panel)	$1.35-1.80$   $\mathrm{lbs} / \mathrm{ft}^{3}$	4.0 Inches   Maximum	$\leq 75$	$\leq 450$

${ }^{1}$ Ceiling Measurement Only. This measurement is conducted through determination of flame spread index and smoke developed index with the removal of any contribution of molten materials ignited on the floor of the tunnel assembly.

## LOGIX UBC 26-3 Configuration

Meets requirements with $1 / 2$ inch thickness gypsum fastened with $21 / 4$ inch length standard drywall screws at 12 inch on center. Fasteners must be anchored into LOGIX ICF web ties.

QAI Design Listing B1031-1 LOGIX Insulated Concrete Form (ICF) - CAN/ULC
S101 / ASTM E119
Load Bearing Fire-Resistance-Rated Wall Assembly ${ }^{1}$

ASSEMLY   RATING   (Hours)	MINIMUM CONCRETE   CORE THICKNESS   $(\mathrm{MM})$	MINIMUM CONCRETE   CORE THICKNESS   (INCHES)
2	102	4
3	159	6.25
4	204	8

(See pdf Attachment)

NO.	COMPONENT	DESCRIPTION
1	Interior Sheathing	Minimum $1 / 2$ inch ( 12 mm ) thickness ASTM C1396 listed gypsum wall board, installed with 51 mm (2 inch) length drywall screws spaced at 406 mm ( 16 inches) on center horizontally and vertically.   For $61 / 4$ inch concrete LOGIX ICF product used in load bearing fire-resistance-rated wall assemblies, listed 16 mm ( $5 / 8$ inch) thickness Type X gypsum wall board complying with ASTM C1396 is required fastened as noted above.   Gypsum is required to be taped and mudded per industry standard and the applicable model code.
2	Expanded   Polystyrene (EPS) Insulation	LOGIX ICF component $70 \mathrm{~mm}\left(2^{3 / 4}\right)$ inch thickness Type 2 (CAN/ULC S701) / Type II (ASTM C578) QAI certified expanded polystyrene thermal insulation. LOGIX ICF EPS panels have interlocking teeth to allow stacking onsite to create the forming wall.
3	Web Ties	LOGIX polypropylene web tie component, spaced at 203 mm (8 inches) on center spacing through LOGIX ICF. Web ties can be stacked or staggered vertically during installation (staggered web tie system shown).
4	Concrete Core	Minimum core as noted in Table above of 20 MPa ( $2,900 \mathrm{psi}$ ) compressive strength concrete. Steel reinforcing, while not shown, is approved for use. Rebar addition is to be designed and approved by a registered design professional, or authority having jurisdiction in accordance with the applicable code

## 7.5 - QAI LISTING REPORT continued

		requirements.
5	Exterior Cladding   (Not Shown)	Exterior claddings are approved for use with the   LOGIX ICF load bearing fire-resistance-rated wall   assemblies without negatively impacting the fire rating.   These exterior claddings include: brick veneer, stucco,   fire rated exterior insulating finish systems where no   additional EPS is added, cultured stone, aluminum and   steel products. All exterior claddings are to be installed   with the applicable building code, and the   manufacturer's approved installation instructions.

Note 1: The allowable load for LOGIX ICF Load Bearing Fire-Resistance-Rated Construction is to be determined by a registered design professional, or authority having jurisdiction in accordance with the applicable codes.

Note: $\quad$ Final acceptance of the product in the intended application is to be determined by the authority having jurisdiction.

Product is to be installed in accordance with the manufacturer's published installation instructions by qualified installing personnel.

The materials, products or systems listed herein have been qualified to bear the QAI Listing Mark under the conditions stated with each Listing. Only those products bearing the QAI Listing Mark are considered to be listed by QAI.

No warrantee is expressed or implied, and no guarantee is provided that any jurisdictional authority will accept the Listing found herein. The appropriate authorities should be contacted regarding the acceptability of any given Listing.

Visit the QAI Online Listing Directory located at www.qai.org for the most up to date version of this Listing and to validate that this QAI Listing is active.

Questions regarding this listing may be directed to info@qai.org. Please include the listing number in the request.

FORM History

History Date	Version	Change Description	Reviewed By	Approved By
$04 / 17 / 2014$	3.0	Added disclaimer to   form.	J. Johnson	K. Adamson


Effective Date: September 15, 2006	QM0604 Draft Listing Page	Page 4 of 4

## 8.0 - SPECIFICATIONS \& REFERENCES

8.1 - TECHNICAL SPECIFICATIONS ..... 8-3
8.2 - MATERIAL SAFETY DATA SHEET. ..... 8-9
8.3 - RECOMMENDED INDUSTRY PRACTICE FOR PLACING REINFORCING BARS ..... 8-14
8.4 - STANDARD PRACTICE - SPLICING \& DOWELS ..... 8-15
8.5 - LOGIX R-VALUES ..... 8-18

## 8.1 - TECHNICAL SPECIFICATIONS

## LOGIX INSULATED CONCRETE FORMS MATERIAL PROPERTY DATA SHEET

This document is intended for general information purposes only regarding specifications for Logix Insulated Concrete Forms (herein referred to as Logix ICF). Technical specification sheet, as per Construction Specifications institute (CSI) formatting, can be downloaded at www.logixicf.com.

## 1 PRODUCT DESCRIPTION

- Logix ICF consists of two flame-resistant EPS boards separated by polypropylene webs.
- Logix ICF consists of solid form units (LOGIX Pro Forms) or knock-down forms (LOGIX KD Forms) or a combination of both Logix form and Logix KD forms, referred to as LOGIX Hybrid Forms.
- The EPS foam boards are a minimum 70 mm ( 2.75 inch) thick. Increased EPS foam boards are available by utilizing D-Rv insert panels, which provides additional thickness in increments of 50 mm (2 inch).
- The webs separate the EPS boards to form 102 mm ( 4 inch), 159 mm ( 6.25 inc ), 203 mm ( 8 inch ), 254 mm ( 10 inch ) and 305 mm ( 12 inch) cavities, which create the concrete wall thicknesses. With Logix Xtenders the concrete wall thickness can be increased to virtually any thickness.
- The webs are spaced every 203 mm ( 8 inch ) on centre horizontally and 406 mm ( 16 inch ) on centre vertically, and contain a 32 mm ( 1.25 inch) wide furring strip that extends the height of each ICF block. The furring strips shall facilitate fasteners for attachment of both exterior and interior finishes.
- A furring strip is located in the corners of corner forms. The furring strip consists of both a vertical and horizontal component. The vertical component extends nearly the full height of the form, extends a minimum of 64 mm ( 2.5 inches) from both sides of the corner, and a minimum of 5 mm ( 0.2 inches) thick. The horizontal component is a minimum 51 mm ( 2 inches) in height, extend a minimum of 152 mm (6 inches) from both sides of the corner, and a minimum of 5 mm ( 0.2 inches) thick.
- The webs facilitate rebar placement in accordance with CAN/CSA A23.1, and ACI 318


## 8.1 - TECHNICAL SPECIFICATIONS continued

## 2 LOGIX PRODUCTS

Logix manufactures both assembled and unassembled insulated concrete form units. Logix assembled forms, known simply as "Logix PRO", are delivered to the job site as assembled form blocks. Logix unassembled forms (or knock-down forms), known as "Logix KD", are delivered to the job site in components that make up the form blocks - the form panels and KD Connectors. Logix KD are assembled on the job site.

Below is a summary of the types of Logix and Logix KD forms available.
LOGIX (assembled form blocks)

	Description
Logix Pro	White in color
Logix Pro Platinum 3	Grey in color. Offers higher R-value ${ }^{1}$ than Logix Pro.
Logix Pro TX	Logix Pro with termite resistant additive Preventol ${ }^{2}$.
Logix Pro Platinum ${ }^{3}$ TX	Logix Platinum with Preventol.

LOGIX KD (unassembled form blocks)

	Description
Logix KD	White in color
Logix KD Platinum 3	Grey in color. Offers higher R-value ${ }^{1}$ than LOGIX Pro.
Logix KD TX	Logix Pro with termite resistant additive Preventol ${ }^{2}$.
Logix KD Platinum ${ }^{3}$ TX	Logix Platinum with Preventol.
Notes:	

1. See Logix Design Manual, Section 8.5 for Logix R-values.
2. Preventol is an effective termite resistant additive.
3. Care should be taken to protect exposed foam surfaces from reflected sunlight and prolonged solar exposure until wall cladding or finish material is applied. Shade exposed foam areas, or remove sources of reflective surfaces, where heat buildup onto exposed foam might occur. For more information refer to BASF Technical Leaflet N-4 Neopor,
"Recommendations for packaging, transporting, storing and installing building insulation products made from Neopor EPS
foam." (The BASF Technical Leaflet is attached to every bundle of LOGIX Platinum forms delivered to a job site).

## 8.1 - TECHNICAL SPECIFICATIONS continued

CODE/CERTIFICATION APPROVALS

- QAI evaluation to IBC and IRC 2012
- Miami-Dade County Approval No.19-0925.02
- State of Florida Certification of Approval No.FL14469-R3
- Wisconsin Building Products Evaluation No. 20199000
- City of New York Materials and Equipment Acceptance - MEA 273-04-M
- QAI listed QM0503
- ASTM E2634, Standard Specification for Flat Wall Insulating Concrete Form (ICF) Systems
- ASTM C578, Standard Specification for Rigid, Cellular Polystyrene Thermal Insulation
- CAN/ULC S717, Standard for Flat Wall Insulating Concrete Form (ICF) Units - Material Properties
- CAN/ULC S701, Standard for Thermal Insulation, Polystyrene Boards


## 4 DESIGN/PERFORMANCE OF LOGIX ICF

A brief description of each test is outlined in the attached Appendix. Test reports are available upon request.

Test Description	Result	Pass/Fail Criteria	Referenced Standard Test Method
$\begin{array}{\|l\|} \hline \text { R-Value (Thermal } \\ \text { Resistance) per inch (per } \\ 25.4 \mathrm{~mm} \text { ) } \\ \hline \end{array}$	R 4.13 (RSI 0.72)	Min. R 4.00 (RSI 0.70)	ASTM C518
Water Absorption	0.18\%	Max. 3.0\%	ASTM D2842
Water Vapor Presence	100.0ng/Pa-s-m2 (1.74perm-in.)	Max. 201 ng/Pa-s-m2 (3.5perm-in.)	ASTM E96
Compressive Strength	165kPa (23.9psi)	Min. 104 kPa (15.0psi)	ASTM D1621 \& ASTM C165
Flexural Strength	365kPa (53.0psi)	Min. 240kPa (35.0psi)	ASTM C203
Dimensional Stability Thermal \& Humid Aging	0.5\%	Max. 2.0\%	ASTM D2126
Density	$27.5 \mathrm{~kg} / \mathrm{m} 3$ (1.72pcf)	Min. $22 \mathrm{~kg} / \mathrm{m} 3$ (1.35pcf)	ASTM C1622 \& ASTM C303
Dimensions	Min. length variation $=0.0 \%$   Max. length variation $=0.4 \%$   Min. width variation $=0.1 \%$   Max. width variation $=0.4 \%$   Min. thickness variation $=-0.3 \mathrm{~mm}$   Max. thickness variation $=0.9 \mathrm{~mm}$   Max. squareness $=3 \mathrm{~mm}$	Min. -0.2\%   Max. 0.4\%   Min. -0.2\%   Max. 0.4\%   Max. -2 mm   Max. 4 mm   Max. 3mm	ASTM C303
Limiting Oxygen Index	29.1\%	Min. 24.0\%	ASTM D2863
Formaldehyde Emission	No formaldehyde detected	N/A*	AATTC-112
Fungi Resistance	No fungal growth detected	N/A*	ASTM G21
Flame Spread Rating	<25	N/A*	ASTM E84/CAN ULC S102

## 8.1 - TECHNICAL SPECIFICATIONS continued

LOGIX INSULATED CONCRETE FORMS GENERAL SPECIFICATIONS SHEET, CONT'D

Test Description	Result	Pass/Fail Criteria	Referenced   Standard Test   Method
Smoke Developed Rating	< 450	N/A*	ASTM E84/CAN ULC   S102
Fire Endurance Test	See Fire Resistance Rating table	N/A*	ASTM E119/CAN   ULC S101
Standard Room Fire Test	w/in acceptable limits	Met conditions required   for exposure to fire for 15   minutes.	UBC 26-3/CAN ULC   1715
Concrete Pour-in-place	Observations of deflection   recorded.	N/A*	CCMC Masterformat   03131
Sound Transmission	STC 56 for 6.25" Logix wall system   (2 layers of 5/8" drywall \& 2x2   wood strips on one side, $1 / 2^{\prime \prime}$   drywall on the other side)   STC 50 for 4" Logix wall system   (1/2" drywall \& 2x2 wood strips on   one side, $1 / 2^{\prime \prime}$ drywall on the other   side).	N/A*	ASTM E90
UPITT Toxicity	Pass	LC50 < 19.7g	University of   Pittsburgh Toxicity   Test

*Code body or referenced test standard required reporting test results only - no Pass/Fail criteria specified.

## 8.1 - TECHNICAL SPECIFICATIONS continued

Bild Anything Better
LOGIX INSULATED CONCRETE FORMS GENERAL SPECIFICATIONS SHEET, CONT'D

TESTS CONDUCTED ON POLYPROPYLENE WEB

Test Description	Result	US Requirements	Referenced Standard Test Method
Flammability	Flame Front Distance $=100 \mathrm{~mm}$ (4")   Avg. Linear Burn Rate $=17.9 \mathrm{~mm} /$ $\min (0.70 \mathrm{in} / \mathrm{min})$	Max. linear burn rate = $40.0 \mathrm{~mm} / \mathrm{min}(1.57 \mathrm{in} / \mathrm{min})$ for Flame Front Dist. = 100 mm (4")	ASTM D635
Smoke Density Rating	19.1\%	Max. 75\%	ASTM D2843
Average Lateral Fastener Resistance of Drywall Screws	1.63kN (367lbs)	N/A*	ASTM D1761
Average Withdrawal Fastener Resistance of Drywall Screws	0.75 kN (169lbs)	N/A*	ASTM D1761
Shear Strength of Polypropylene Web	26.1MPa (37.9psi)	N/A*	ASTM D732, CCMC Masterformat 03131
Average Tensile Strength of Polypropylene Web	3.75 kN (842lbs)	N/A*	ASTM D638
Average Withdrawal Resistance of Staples 1.59 mm 16 ga .	105N (24lbs)	N/A*	ASTM D1761 (under cyclic temperatures)
Average Withdrawal   Resistance of Plane Shank   1.5" long, 3/8" head	155N (35lbs)	N/A*	ASTM D1761   (under cyclic temperatures)
Average Withdrawal Resistance of Ring Shank 1.5" long, 3/8" head	431N (97lbs)	N/A*	ASTM D1761 (under cyclic temperatures)
Average Withdrawal Resistance of Spiral Shank 1.5" long, 3/8" head	135N (30lbs)	N/A*	ASTM D1761 (under cyclic temperatures)
Average Lateral Resistance of Staples 1.59 mm 16 ga .	169N (38lbs)	N/A*	ASTM D1761 (under cyclic temperatures)
Average Lateral Resistance of Plane Shank 1.5" long, 3/8" head	520N (117lbs)	N/A*	ASTM D1761 (under cyclic temperatures)
Average Lateral Resistance of Ring Shank 1.5" long, 3/8" head	378N (85lbs)	N/A*	ASTM D1761 (under cyclic temperatures)
Average Lateral Resistance of Spiral Shank 1.5" long, 3/8" head	200N (45lbs)	N/A*	ASTM D1761 (under cyclic temperatures)

## 8.1 - TECHNICAL SPECIFICATIONS continued

Updated 12/10/19

LOGIX INSULATED CONCRETE FORMS GENERAL SPECIFICATIONS SHEET, CONT'D

Test Description	Result	US Requirements	Referenced   Standard Test   Method
Average Withdrawal   Resistance of Corrosion   Resistance No.8-18 x 0.323   HD x 1.5/8"	567N (127lbs)	N/A*	ASTM D1761
Average Withdrawal   Resistance of Corrosion   Resistance 6d (0.113"   shank x 0.267 HD x 2"   long)	93N (21lbs)	N/A*	
\#6 Coarse Drywall Screw,   1-5/8" long**	787N (177lbs)	N/A*	ASTM D1761
\#6 Fine Drywall Screw,   1-5/8" long**	765N (172lbs)	N/A*	ASTM D1761
16ga. Staple, 1-1/2" long**	124N (28lbs)	N/A*	ASTM D1761
Galvanized Ringed   Wallboard Nail, 1-1/2"   long**	462N (104lbs)	N/A*	ASTM D1761
Hot-dipped Galvanized   Spiral Nail, 2" long**	226N (51lbs)	N/A*	ASTM D1761
\#8 Wood Screw, 2" long**	920 N (207lbs)	N/A*	ASTM D1761
\#8 Exterior Deck Screw, 2"   long**	$934 N$ (210lbs)	ASTM D1761	
\#10 Wood Screw, 2"   long**	880N (198lbs)	AST1761	

*Code body or referenced test standard required reporting test results only - no Pass/Fail criteria specified.
**Applicable to corner web only.
FIRE RESISTANCE RATING

Form Size (Concrete Wall Thickness)	Rating with $1 / 2^{\prime \prime}$ drywall
$100 \mathrm{~mm}\left(4^{\prime \prime}\right)$	2 hrs
$159 \mathrm{~mm}\left(6.25^{\prime \prime}\right)$	3hrs (4hrs if $5 / 8^{\prime \prime}$ drywall used)
$203 \mathrm{~mm}\left(8^{\prime \prime}\right)$ and above	4hrs

*Bearing load applied to wall $=360,000 \mathrm{lbs}$ (360kips)

## 8.2 - MATERIAL SAFETY DATA SHEET

Safety Data Sheet - Expanded Polystyrene (EPS) in Logix ${ }^{\circledR}$ Insulated Concrete Forms

## SAFETY DATA SHEET

Safety Data Sheet - Expanded Polystyrene (EPS) in Logix ${ }^{\circledR}$ Insulated Concrete Forms

SECTION 1 - IDENTIFICATION	
Product identifier:	Logix ${ }^{\circledR}$ Insulated Concrete Forms, Logix ${ }^{\circledR}$ Pro Buck, Logix ${ }^{\circledR}$ XP-1
Other means of   identification:	Logix ICF
Recommended use:	Stay-In-Place Insulated Concrete Forms

## All documents are downloadable at logixicf.com

## 8.2 - MATERIAL SAFETY DATA SHEET continued

Safety Data Sheet - Expanded Polystyrene (EPS) in Logix ${ }^{\circledR}$ Insulated Concrete Forms

SECTION 4 - FIRST AID MEASUREMENTS	
Inhalation:	When hot-knifing vapors may cause irritation to nose and throat. Dizziness may occur in poorly ventilated areas when hot-knifing. Remove affected individual into fresh air and keep the person calm. If difficulties occur, seek medical attention.
Skin contact:	This material is not considered to be a skin irritant. In cases where irritation may occur to extra sensitive skin, wash with soap and water for several minutes. Get medical attention if skin irritation develops or persists.
Eye contact:	Flush eyes with water for several minutes. Get medical attention if eye irritation persists or particulates are difficult to remove from the eye.
Ingestion:	This material is not considered to be hazardous when ingested but may cause blockage of air passage if large pieces are ingested. Get medical attention and apply proper first aid for persons with air passage blocked.
Physical state:	Solid
Odour \& appearance:	Slight hydrocarbon odour, White in color
SECTION 5 - FIRE-FIGHTING MEASURES	
Suitable extinguishing media:	Use water spray, dry chemical, foam or carbon dioxide to extinguish flames.
Special protective equipment and precautions for firefighters:	Firefighters should be equipped with self-contained breathing apparatus and turn-out gear.
Flash Point:	$175-185^{\circ} \mathrm{C}\left(347-365{ }^{\circ} \mathrm{F}\right)$, ASTM D3278
Autoignition:	$285{ }^{\circ} \mathrm{C}\left(571{ }^{\circ} \mathrm{F}\right)$, DIN 51794
Lower explosion limit:	1.4 \% (V) (air)
Upper explosion limit:	8.3 \% (V) (air)
Flammability:	Not highly (UN Test N. 1 (ready combustible solids))
Self-ignition temperature:	Not self-igniting
Further information:	Fire gives off black smoke consisting of carbon monoxide ( $<10 \mathrm{ppm}$ ), carbon dioxide ( 500 ppm ), oxides of nitrogen ( 4 ppm ), including trace of amounts of pentane, aldehydes and keytones. Fire hazards increase with presence of ignition sources or high concentrations of dust from work sites.

## 8.2 - MATERIAL SAFETY DATA SHEET continued

SNEA

## All documents are downloadable at logixicf.com

## 8.2 - MATERIAL SAFETY DATA SHEET continued


Safety Data Sheet - Expanded Polystyrene (EPS) in Logix ${ }^{\text {® }}$ Insulated Concrete Forms
Issue Date: Oct 30, 2018

Vapour pressure:	$\mathrm{N} / \mathrm{A}$
Vapour density:	$\mathrm{N} / \mathrm{A}$
Solubility:	Insoluble in water. Soluble with materials containing primarily of hydrocarbons,   aldehydes, esters and amines.
Partition coefficient - n-   octanol/water:	$\mathrm{N} / \mathrm{A}$
Viscosity:	$\mathrm{N} / \mathrm{A}$
SECTION 10 - STABILITY AND REACTIVITY	
Reactivity:	Products react to high temperatures and strong oxidizers.
Chemical stability:	Stable under normal use conditions.
Possibility of hazardous   reactions:	None.   Conditions to avoid:Avoid all sources of ignition, such as heat, sparks, open flame.   Unstable when exposed to high temperatures. Recommended maximum use   temperature of $60^{\circ} \mathrm{C}\left(166^{\circ} \mathrm{F}\right)$.
Incompatible materials:	Not compatible with materials containing primarily of hydrocarbons, aldehydes, esters   and amines.
Hazardous decomposition   products:	High heat or combustion produces black smoke consisting of carbon monoxide $(<$   10ppm), carbon dioxide $(500 \mathrm{ppm})$, oxides of nitrogen (4ppm), including trace of   amounts of pentane, aldehydes and keytones.

SECTION 11 - TOXICOLOGICAL INFORMATION

Primary route of entry:	Eyes, skin and inhalation.
Effects of Acute Exposure:	When hot-knifing material, vapors may cause irritation to eyes.
Eyes:	This material is not considered to be a skin irritant. Products may contain small   particulates of dust accumulated naturally from surrounding environment, which may   cause skin irritation with possible mild discomfort on extra sensitive skin.
Skin:	When hot-knifing vapors may be cause irritation to nose and throat. Dizziness may   occur in poorly ventilated areas when hot-knifing.
Inhalation:	Exposure to vapors may aggravate existing respiratory conditions, such as asthma,   bronchitis and inflammatory or fibrotic respiratory disease.
Effects of chronic   exposure:	

## SECTION 12 - ECOLOGICAL INFORMATION

Non-biodegradable.
SECTION 13 - DISPOSAL CONSIDERATIONS
Loose material can be vacuumed or swept and placed in disposal containers.
This material can be disposed of in accordance with local, state/provincial and federal regulations. This material is not considered a hazardous waste.

## 8.2 - MATERIAL SAFETY DATA SHEET continued

Safety Data Sheet - Expanded Polystyrene (EPS) in Logix ${ }^{\circledR}$ Insulated Concrete Forms	
SECTION 14 - TRANSPORT INFORMATION	
N/A	
SECTION 15 - REGULATORY INFORMATION	
All ingredients listed with TSCA and DSL (Toxic Substances Control Act and Domestic Substances List, respectively)	
EPCRA 311-312 (Emergency Planning and Emergency Right-to-Know Act): Not hazardous	
Classified as non-hazardous with WHMIS.	
SECTION 16 - OTHER INFORMATION	
SDS updates: $\quad$ October 30, 2018	

TO THE BEST OF OUR KNOWLEDGE THE INFORMATION CONTAINED HEREIN IS BELIEVED TO bE ACCURATE. HOWEVER, NEITHER THE ABOVE NAMED MANUFACTURER OR SUPPLIER NOR ANY OF ITS SUBSIDIARIES ASSUMES ANY LIABILITY WHATSOEVER FOR THE ACCURACY OR COMPLETENESS OF THE INFORMATION CONTAINED HEREIN. FINAL DETERMINATION OF SUITABILITY OF ANY MATERIAL IS THE SOLE RESPONSIBILITY OF THE USER. ALL MATERIALS MAY PRESENT UNKNOWN HAZARDS AND SHOULD BE USED WITH CAUTION. ALTHOUGH CERTAIN HAZARDS ARE DESCRIBED HEREIN, WE CANNOT GUARANTEE THAT THESE ARE THE ONLY HAZARDS THAT EXIST.

## All documents are downloadable at logixicf.com

## RECOMMENDED INDUSTRY PRACTICE FOR PLACING REINFORCING BARS*

## 1. Introduction

These recommendations for placing reinforcing bars are partially based upon the ACI Building Code.

## 2. General

Reinforcing bars should be accurately placed in the positions shown on the placing drawings and adequately tied and supported before concrete is placed, and secured against displacement within the tolerances recommended in Section 8.

Welding of crossing bars (tack welding) should not be permitted for assembly of reinforcement unless authorized by the Architect/Engineer.

## 3. Surface Condition of Reinforcement

At the time of concrete placement, all reinforcing bars should be free of mud, oil, or other deleterious materials. Reinforcing bars with rust, mill scale, or a combination of both should be considered as satisfactory, provided the minimum dimensions, weight, and height of deformations of a hand-wire-brushed test specimen are not less than the applicable ASTM specification requirements.

## 4. Bending

Reinforcing bars should not be bent or straightened in a manner that will injure the material. Bars with kinks or improper bends should not be used. Except for realignment of \#7 through \#18 rebar up to about $30^{\circ}$ bend and \#3 through \#6 rebar up to about a $45^{n}$ bend, no bars partially embedded in concrete should be field bent, except as shown on the project drawings or permitted by the Architect/Eingineer.

## 5. Spacing of Reinforcement

The clear distance berween parallel reinforcing bars in a layer should not be less than the nominal diameter of the bars, nor 1 in . Clear distance should also not be less than one and one-third times the nominal maximum size of the coarse aggregate, except if in the judgement of the Architect/Engineer, workability and methods of consolidation are such that concrete can be placed without honeycomb or voids.

Where parallel reinforcement is placed in two or more layers, the bars in the upper layers should be placed directly above those in the bottom layer with the clear distance between layers not less than I in.

Groups of parallel reinforcing bars bundled in contact, assumed to act as a unit, not more than four in any one bundle may be used only when stimrups or ties enclose the bundle. Bars larger than \#11 should not be
bundled in beams or girders. Individual bars in a bundle cut off within the span of flexural members should terminate at different points with at least 40 bar diameters stagger: Where spacing limitations and minimum clear cover are based on bar size, a unit of bundled bars should be treated as a single bar of a diameter derived from the equivalent total area.

In walls and slabs other than concrete joist construefion, the principal reinforcement should not be spaced farther apart than three times the wall or slab thickness. nor more than 18 in.

In spirally reinforced and tied columns, the clear distance between longitudinal bars should not be less than one and one-half times the nominal bar diameter, nor $71 / 2$ in.

The clear distance limitation between bats should also apply to the clear distance between a contact lap splice and adjacent splices or bars.

## 6. Splices in Reinforcement**

### 6.1 General

Splicing of reinforcing bars should be either by lapping, mechanical connections, of by welding.

Splices of reinforcing bars should be made only as required or permitted on the project drawings or in the project specifications, or as authorized by the Architect/Engimeer All welding should conform to the current edition of "Structural Welding CodeReinforcing Steel" (ANSI/AWS D1,4).

### 6.2 Lap Splices

Lap splices of \#14 and \#18 bars should not be used, except in compression only to \#11 and smaller bars.

Lap splices of bundled bars should be based on the lap splice length recommended for individual bars of the same size as the bars spliced, and such individual splices within the bundle should not overlap each other. The length of lap should be increased 20 percent for a 3-bar bundle and 33 percent for a 4 -bar bundle.

Bar laps placed in contact should be securely wired together in suct a manner as to maintain the alignment of the bars and to provide minimum clearances.

Bars spliced by noncontact lap splices in flexural members should not be spaced transversely Farther apart than one-fifth the required length of lap nor 6 in.

[^26]
## 8.4 - STANDARD PRACTICE - SPLICING \& DOWELS

## Lap Splices



Figure 1a: Contact lap splices


Figure 1b: Non-contact lap splices

A lap is when two pieces of rebar overlap to form a continuous line. This helps transfer loads properly throughout the structure. There are two types of lap splices: contact lap and non-contact lap splices (see Figure 1a and 1b). The lapped sections of contact lap splices are wired together. Lapped sections of non-contact lap splices do not touch and are permitted in practice provided the distance between lap sections meet the specified code requirements.

When using LOGIX ICFs non-contact lap splices can be used in lieu of contact lap splices.

## Lap Splices in Horizontal Rebar

In traditional construction methods, contact lap splices are more commonly used because it offers the most reliable method of ensuring the lapped sections are secure against displacement, especially during concrete pours. LOGIX ICFs can accommodate contact lap splices. However, the rebar slots in the LOGIX webs are also designed to accommodate non-contact lap splices,

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

All documents are downloadable at logixicf.com

## 8.4 - STANDARD PRACTICE - SPLICING \& DOWELS continued



Figure 2a: Contact lap splices


Figure 2b: Non-contact lap splices


Figure 3: Vertical rebar in LOGIX ICF wall system
ensuring the horizontal rebar stays in place (see
Figure $2 \mathbf{a}$ and $\mathbf{2 b}$ ). This minimizes the need to wire tie lapped sections and reduces labor.

The length of a lapped section (or lap length) varies depending mainly on the loading conditions, rebar size, rebar spacing, rebar grade and concrete strength. As a general rule, LOGIX recommends a lap length of 40 d or $24^{\prime \prime}$, whichever is greater, for residential construction (see Figure 1a and 1b).

## Lap Splices in Vertical Rebar

For the same reason as horizontal rebar, contact lap splices are also more commonly used in traditional construction methods. However, contact lap splices are not necessary when using LOGIX ICFs. The LOGIX web ties, which are spaced horizontally every 8" (203mm) and about 5.25" (133mm) vertically per block, provides enough stability for placement of vertical rebar. Vertical rebar can be further secured if it is slid through a staggered pattern of horizontal rebar. The slots in the webs have been designed to accommodate this (see Figure 3).

## 8.4 - STANDARD PRACTICE - SPLICING \& DOWELS continued

## Footing Dowels



Figure 4: Wall/Footing connection


R611.7.1.4

Footing dowels connects the wall to the footing (see Figure 4). This prevents wall movement at the wall/footing joint caused mainly by soil loads. In residential construction, the vertical rebar in the wall itself does not contribute to the strength of the wall/footing connection and hence is not required to splice with the footing or match the spacing of the footing dowels. In cases, where lap splice may be required, non-contact lap splices are permitted.

## Lap Splices -Building \& Design Code References

International Building Code 2003 (IBC 2003), R611.7.1.4:
"R611.7.1.4 Lap Splices. Where lap slicing of vertical or horizontal reinforcing steel is necessary, the lap slice shall be in accordance with Figure R611.7.1.4 and a minimum of 40 db , where db is the diameter of the smaller. The maximum distance between noncontact parallel bars at a lap slice shall not exceed 8db."

National Building Code 1995 (NBC 1995), 4.3.3.1:

Clause 4.3.3.1 references concrete design code, CSA
A23.3 (specifically CSA A23.3, 12.14.2.3):
"12.14.2.3
Bars spliced by lap splices in flexural members shall have a transverse spacing not exceeding the lesser of one-fifth of the required lap splice length or 150mm."

## LOGIX ${ }^{\circledR}$ INSULATED CONCRETE FORMS

All documents are downloadable at logixicf.com

## 8.5 - LOGIX R-VALUES



1. R1 denotes total R-value of form panels only (per ASTM C518 at average mean temperature of 75 deg F.). R2 denotes total R-value of a wall assembly consisting of form panels, 4 inch concrete core, $1 / 2$ inch drywall and interior airfilm. R1 and R2 are based on imperial units. R-values are based on independent testing conducted by Intertek Testing Services.

## Connect

## with a Local

Manufacturer
888.838.5038

330 Cain Drive
Haysville, KS 67060-2004
888.706.7709

840 Division St.
Cobourg, ON K9A 5V2
888.453.5961

11581-272 St.
Acheson, AB T7X 6E9
888.453.5961

6333 Unsworth Rd.
Chilliwack, BC V2R 5M3
877.789.7622

35 Headingley Rd.
Headingley, MB R4H 0A8


[^0]:    STEP 7: Solid wood bucks will require additional concrete anchors to create a permanent attachment to the concrete.

[^1]:    

[^2]:    For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20 MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form
    2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of $480 \mathrm{~kg} / \mathrm{m} 3$.
    3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.

[^3]:    For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20 MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.
    2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of $480 \mathrm{~kg} / \mathrm{m} 3$.
    3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.

[^4]:    For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20 MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form
    2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of $480 \mathrm{~kg} / \mathrm{m} 3$.
    3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.
    4. Alternating horizontal bar spacing of $12^{\prime \prime}$ o.c. and $24^{\prime \prime}$ o.c. may be used to achieve an average spacing of $18^{\prime \prime}$ o.c. where 18 " o.c. spacing is specified for horizontal bars, as shown in Detail A. 3 .

[^5]:    For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20 MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form
    2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of $480 \mathrm{~kg} / \mathrm{m} 3$.
    3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.
    4. Alternating horizontal bar spacing of $12^{\prime \prime}$ o.c. and $24^{\prime \prime}$ o.c. may be used to achieve an average spacing of $18^{\prime \prime}$ o.c. where $18^{\prime \prime}$ o.c. spacing is specified for horizontal bars, as shown in Detail A. 3 .

[^6]:     wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.
    2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of $480 \mathrm{~kg} / \mathrm{m} 3$.
    3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.
    4. Alternating horizontal bar spacing of $12^{\prime \prime}$ o.c. and 24 " o.c. may be used to achieve an average spacing of 18 " o.c. where 18 " o.c. spacing is specified for horizontal bars, as shown in Detail A.3.

[^7]:    For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20 MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form
    2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of $480 \mathrm{~kg} / \mathrm{m} 3$.
    3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.
    4. Provide 3 horizontal bars in every two rows of $18^{\prime \prime}$ high block to achieve an average spacing of $12^{\prime \prime}$ o.c. where 12 " spacing o.c. is specified for horizontal bars, as shown in Detail A.4.
    5. Provide 4 horizontal bars in every three rows of $16^{\prime \prime}$ high block to achieve an average spacing of $12^{\prime \prime}$ o.c. where 12 " spacing o.c. is specified for horizontal bars, as shown in Detail A. 5 .

[^8]:    1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20 MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.
    2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of $480 \mathrm{~kg} / \mathrm{m} 3$.
    3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.
    4. Provide 3 horizontal bars in every two rows of 18 " high block to achieve an average spacing of 12 " o.c. where 12 " spacing o.c. is specified for horizontal bars, as shown in Detail A.4.
    5. Provide 4 horizontal bars in every three rows of $16^{\prime \prime}$ high block to achieve an average spacing of $12^{\prime \prime}$ o.c. where $12^{\prime \prime}$ spacing o.c. is specified for horizontal bars, as shown in Detail A. 5 .
[^9]:    For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20 MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.
    2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of $480 \mathrm{~kg} / \mathrm{m} 3$.
    3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.
    4. Provide 3 horizontal bars in every two rows of $18^{\prime \prime}$ high block to achieve an average spacing of $12^{\prime \prime}$ o.c. where $12^{\prime \prime}$ spacing o.c. is specified for horizontal bars, as shown in Detail A.4.
    5. Provide 4 horizontal bars in every three rows of $16^{\prime \prime}$ high block to achieve an average spacing of 12 " o.c. where $12^{\prime \prime}$ spacing o.c. is specified for horizontal bars, as shown in Detail A.5.

[^10]:    1. For highlighted data, where the below grade wall meets all the requirements of NBC Part 9 for a solid concrete foundation wall and supports only wood frame construction above, a 20 MPa unreinforced wall is adequate as per 2015 NBC table 9.15.4.2.A. Provide the reinforcing shown for walls supporting ICF walls above or with brick veneer supported with the brick ledge form.
    2. Below grade walls supporting "Drained Earth" in accordance with 2015 NBC 9.4.4.6 may be designed for an equivalent fluid pressure of $480 \mathrm{~kg} / \mathrm{m} 3$.
    3. This table is to be used in conjunction with the "Design Limitations" and "Below Grade Reinforcement Placement" drawing.
    4. Provide 3 horizontal bars in every two rows of 18 " high block to achieve an average spacing of 12 " o.c. where 12 " spacing o.c. is specified for horizontal bars, as shown in Detail A.4.
    5. Provide 4 horizontal bars in every three rows of $16^{\prime \prime}$ high block to achieve an average spacing of $12^{\prime \prime}$ o.c. where $12^{\prime \prime}$ spacing o.c. is specified for horizontal bars, as shown in Detail A. 5 .
[^11]:    1. $S_{\text {a,ICF }}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix A.

    This table is to be used in conjunction with the "Design Limitations."
    Bolded data indicates reinforcing for ground floor concrete walls only. Second floor concrete walls to be limited in height to $3.0 \mathrm{~m}\left(0^{\prime}-0^{\prime \prime}\right)$.
    Provide two layers of the indicated horizontal and vertical distributed steel specified for 300 mm ( 12 ") walls. Place each layer as shown in the rebar placement drawing.
    Alternating horizontal bar spacing of 12 " o.c. and 24 " o.c. may be used to achieve an average spacing of 18 " o.c. where 18 " o.c. spacing is specified for horizontal bars, as shown in Detail A. 3 .
    Provide 3 horizontal bars in every two rows of $18^{" \prime}$ high block to achieve an average spacing of 12 " o.c. where 12 " spacing o.c. is specified for horizontal bars, as shown in Detail A.4.
    7. Provide 4 horizontal bars in every three rows of $16^{\prime \prime}$ high block to achieve an average spacing of 12 " o.c. where 12 " spacing o.c. is specified for horizontal bars, as shown in Detail A. 5 .

[^12]:    1. $\quad S_{\text {alcF }}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix $A$
    2. This table is to be used in conjunction with the "Design Limitations."
    3. Provide two layers of the indicated horizontal and vertical distributed steel specified for 300 mm (12") walls. Place each layer as shown in the rebar placement drawing.
    4. All four sides of the building are to have a minimum number and length of shear walls that conforms to this table.

    Use Table A. 10 for buildings that do not meet the required wall length of this table.
    Use the left-most column that meets the minimum number and length of shear walls to determine the minimum required concentrated reinforcement
    Shaded cells indicate that the minimum bars required beside all windows and openings, as per the "Design Limitations", are adequate.
    All required number of 10 M bars may be replaced by an equivalent number of 15 M bars as given in the "Design Limitations"
    9. All concentrated reinforcement is to be continues to the bottom of the foundation wall. Provide lap splices as required.
    10. Concentrated reinforcement is to be placed in accordance with Bar Placement Detail.

[^13]:    1. $\quad S_{\text {a,ICF }}$ is equivalent spectral response acceleration for ICF walls as provided in Appendix $A$.
    2. This table is to be used in conjunction with the "Design Limitations"

    Provide two layers of the indicated horizontal and vertical distributed steel specified for 300 mm ( $12^{\prime \prime}$ ) walls. Place each layer as shown in the rebar placement drawing.
    All four sides of the building are to have a minimum number and length of shear walls that conforms to this table.
    Use Table A. 10 for buildings that do not meet the required wall length of this table.
    Use the left-most column that meets the minimum number and length of shear walls to determine the minimum required concentrated reinforcement
    Shaded cells indicate that the minimum bars required beside all windows and openings, as per the "Design Limitations", are adequate.
    All required number of 10 M bars may be replaced by an equivalent number of 15 M bars as given in the "Design Limitations"
    9. All concentrated reinforcement is to be continues to the bottom of the foundation wall. Provide lap splices as required.
    10. Concentrated reinforcement is to be placed in accordance with Bar Placement Detail.

[^14]:    1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
[^15]:    1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
[^16]:    1. Stirrup spacing (s) and end distance are given in "mm" and "inch"
[^17]:    1. This section references Part 9 of the 2015 National Building Code of Canada.
    2. This detail applies to one- and two-story buildings conforming to part 9 of the 2015 National Building Code of Canada.
    3. This table is a copy of NBCC 2015 T.9.15.4.2-A and OBC 2012(r2020) T.9.15.4.2-A.
    4. This table to be used in conjunction with section 5.6. of this design manual.
[^18]:    NOTES:

    1. This detail applies to one- and two-story buildings conforming to part 9 of the 2015 National Building Code of Canada.
    2. Wall reinforcing not required when using 8 " forms.
    3. Wall reinforcing mot required for 6 " forms where the backfill height above basement floor does not exceed 2'-7".
    4. Footing reinforcement and dowels are required for all cases.
    5. Refer to section 5.7., for additional information.
[^19]:    The ICFMA Prescriptive ICF Design for Part 9 Structures in Canada Version 2021-1 ©2021 All Rights Reserved.

[^20]:    $\mathrm{S}_{\mathrm{a}, \mathrm{CCF}}=\max \left[{ }^{2} / 3 \mathrm{~F}(0.2) \mathrm{S}_{\mathrm{a}}(0.2),{ }^{2} / 3 \mathrm{~F}(0.5) \mathrm{S}_{\mathrm{a}}(0.5), \mathrm{F}(0.5) \mathrm{S}_{\mathrm{a}}(0.5)\right]_{\mathrm{E}} \mathrm{M}_{\mathrm{v}} / 1.47$

[^21]:    Council, National R. National Building Code 2015. National Research Council.

[^22]:    Council, National R. National Building Code 2015. National Research Council.

[^23]:    Council, National R. National Building Code 2015. National Research Council.

[^24]:    Council, National R. National Building Code 2015. National Research Council.

[^25]:    Council, National R. National Building Code 2015. National Research Council.

[^26]:    *For more complete recommendations on bar placement, see Flacing Reinforcing Bars available from the Concrete Reinforcing Steel lnstute
    "See Reinforcement. Anchorages, Lap Splices and Connections by the Concrete Reinforcing Steel Institute

