SCOPE OF EVALUATION

GENERAL: This report evaluates the use of the Logix Insulated Concrete Form Wall System, manufactured by AMC Foam Technologies, Inc., evaluated as permanent form work and insulation system for reinforced concrete beams, lintels, exterior and interior walls, and foundation and retaining walls. The Logix Insulated Concrete Form Wall System was evaluated for safety requirements of the foam plastic and structural requirements for the codes listed below.

This review includes code requirements in accordance with the current Wisconsin Uniform Dwelling Code for 1 & 2 family dwellings (UDC):

- **Foam Plastic:** The Logix Insulated Concrete Form Wall System was evaluated in accordance with the fire safety requirements of SPS 321.11.
- **Structural:** The Logix Insulated Concrete Form Wall System was evaluated in accordance with the structural requirements of SPS 321.02(3)(d).

This review includes the cited International Building Code (IBC) requirements below in accordance with the Wisconsin Amended IBC Code:

- **Foam Plastic & Fire Endurance:** The Logix Insulated Concrete Form Wall System was evaluated in accordance with the fire safety requirements IBC 2603.
Structural: The Logix Insulated Concrete Form Wall System was evaluated in accordance with the requirements of IBC Chapter 16.

Fire-Resistance Rating and Fire Tests: The Logix Insulated Concrete Form Wall System was evaluated in accordance with the requirements of IBC 703.1 and 703.2.

Note: Structural calculations shall be submitted (job-to-job basis) in accordance with IBC Chapter 16 for applicable Live, Ground Snow, Roof, Wind, and Seismic Loads.

DESCRIPTION AND USE

General: The Logix Insulated Concrete Form Wall System consists of expanded polystyrene (EPS) forms which are stacked in running bond and serve as forms for a 4-inch-thick, 6.25-inch-thick, 8-inch-thick, 10-inch-thick, and 12-inch or more-thick reinforced concrete wall. The EPS forms remain in place to provide insulation for the wall. The reinforced concrete wall system may be used as a foundation wall, above grade wall, basement wall, shear wall, exterior load-bearing wall, non-load bearing, and lintel section.

The Logix EPS forms are 48 inches long and 16 inches high. The 4-inch Logix form for 4-inch-thick reinforced concrete walls is 9½ inches wide. The 6.25-inch Logix form for 6-inch-thick reinforced concrete walls is 11¾ inches wide. The 8-inch Logix form for 8-inch-thick reinforced concrete walls is 13½ inches wide. The 10-inch Logix form for 10-inch-thick reinforced concrete walls is 15½ inches wide. The 12-inch Logix form for 12-inch-thick reinforced concrete walls is 17½ inches wide. Thicker walls are achieved by the use of Logix Xtender Ties.

The forms are available as solid-form blocks or knock-down blocks. The solid-form blocks consist of opposing form panels connected by 6 polypropylene web ties embedded into the panels forming a solid form block. The knock-down blocks consist of opposing form panels connected by 6 polypropylene snap-in-place ties. The polypropylene plastic web ties are spaced 8 inches on center and black in color.

Material: Logix Form Blocks are molded from modified expandable polystyrene beads. Manufacturers include:

<table>
<thead>
<tr>
<th>Product</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFL-422</td>
<td>BASF Corporation (Beaver Plastics Ltd.)</td>
</tr>
</tbody>
</table>

The blocks are manufactured to a nominal density of 1.68 pounds per cubic foot.

Concrete: Normal-weight concrete complying with SPS 321.02(3)(d) and IBC 1903.1 with maximum aggregate size of ¾ inch and a minimum compressive strength of 2,500 psi.

Reinforcement: The concrete is reinforced with Nos. 3, 4, 5 and 6 deformed steel reinforcing bars, Type A615, Grade No. 40, with a minimum yield strength of 40,000 psi and Grade No. 60, with a minimum yield strength of 60,000 psi. All steel reinforcement shall be in accordance with IBC 1901.2 & ACI 318 as modified by IBC 1905.
Each pallet of Logix forms shall bear a label with the manufacturer’s name, and the quality control inspection agency.

TESTS AND RESULTS

Intertek Testing Services, ETL SEMKO, conducted testing on the Logix forms. The Logix insulated concrete forms produced by Foam Technologies, Inc. have been subject to and complied with the following testing:

- EPS has a maximum flame-spread rating of 25 and a maximum smoke-developed rating of 450. Testing was done in accordance with ASTM E 84.
- Meets 3-hour fire rating in accordance with ASTM E119 and CAN/ULC S101 conducted by Intertek Testing Services NA Ltd, on April 24, 2002 filed with previous approval report.

<table>
<thead>
<tr>
<th>Assembly Rating, hours</th>
<th>Minimum ICF Cavity Thickness, in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6.25 (4-hr. rating with 5/8" drywall)</td>
</tr>
<tr>
<td>4</td>
<td>Greater than or equal to 8</td>
</tr>
</tbody>
</table>

NOTE: 1. Unless noted otherwise, ratings are based on wall assembly having 1/2" drywall on fire exposed side.
2. Load bearing during test = 36,000lb/ft.

- Room fire Test Standard for Interior of Foam Plastics Systems in accordance with ASTM D1929, D635 and D2843.
- Crawl Space evaluation conducted in accordance with ICC ES requirements.
- Conforms to ASTM C578, with equivalency CAN/ULC S701 (Standard Specification for Rigid, Cellular Polystyrene Thermal Insulation) as a Type II Thermal Insulating Material.
- Fastener Withdrawal Evaluation in accordance with ASTM D1761.
- Fastener Lateral Resistance tested in accordance with ASTM D1761.
- Polypropylene web material conforms to CC1 Plastic material when tested in accordance with ASTM D1929, D635, and D2843.

The Rigid Cellular (RCPS) Polystyrene Thermal Insulation was tested May 10, 2002 for apparent density, compressive properties, and flexural properties in accordance with ASTM C578-95 “Standard Specification for Rigid, Cellular Polystyrene Thermal Insulation,” using the following test methods:

<table>
<thead>
<tr>
<th>Type</th>
<th>Test Result</th>
<th>Minimum Requirement</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type II</td>
<td>1.68</td>
<td>1.35 lbs/ft³</td>
<td>Complied</td>
</tr>
</tbody>
</table>

- **Compressive Properties**: ASTM C165-00 “Standard Test Method for Measuring Compressive Properties of Thermal Insulation”.

<table>
<thead>
<tr>
<th>Type</th>
<th>Test Result</th>
<th>Minimum Requirement</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type II</td>
<td>24.5 psi</td>
<td>15.0 psi</td>
<td>Complied</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Test Result</th>
<th>Minimum Requirement</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC Type II</td>
<td>44.9 psi</td>
<td>40.0 psi</td>
<td>Complied</td>
</tr>
</tbody>
</table>

Physical properties testing on May 10, 2002 of polypropylene reinforcing web material was performed in general accordance with the following test methods:

• **Screw Withdrawal:** ICC ES AC 116 (July 2001) “Acceptance Criteria for Nails and Spikes,” in conjunction with ASTM D1761-88 (Re-approved 2000) “Standard Test Methods for Mechanical Fasteners in Wood”, Sections 1 through 12 (two types of fasteners were tested: a type ‘W’ coarse thread drywall screw, and a type ‘S’ fine thread drywall screw)

<table>
<thead>
<tr>
<th>Fastener Type</th>
<th>Withdrawal Max Load (lbs.)</th>
<th>Lateral Max Load (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Type ‘W’ Coarse Thread Drywall Screw</td>
<td>166</td>
<td>367</td>
</tr>
<tr>
<td>COV Type ‘W’ Coarse Thread Drywall Screw</td>
<td>10.6 %</td>
<td>8.4 %</td>
</tr>
<tr>
<td>Average Type ‘S’ Fine Thread Drywall Screw</td>
<td>169</td>
<td>328</td>
</tr>
<tr>
<td>COV Type ‘S’ Fine Thread Drywall Screw</td>
<td>8.4 %</td>
<td>4.1 %</td>
</tr>
</tbody>
</table>

• **Tensile Strength:** ASTM D638-01 “Standard Test Method for Tensile Properties of Plastics”

<table>
<thead>
<tr>
<th></th>
<th>Ultimate Tensile Strength (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>842</td>
</tr>
<tr>
<td>COV</td>
<td>1.7 %</td>
</tr>
</tbody>
</table>

DISCUSSION: ICC ES AC 116 references ASTM D1761 for lateral and withdrawal testing. The ASTM D6117 and ASTM D1761 are very similar in methodology, however ASTM D6117 is used for solid sections of plastic members and not for sheets of plastic material. In addition to this, the ICC ES AC 116 document gives guidance on establishing allowable loads, which ASTM D6117 does not provide. In the absence of a standard that more specifically addresses this issue, ITS (Intertek Testing Services) recommends that AC 116 is more appropriate.

It is ITS’s opinion that it is appropriate to state specific loads for this material. ASTM D5456-99 clause A2.6.1 states, “The equivalent specific gravity is determined from Table 12.21 or Ref. (3) such that the table value for the tested nail does not exceed the average ultimate withdrawal resistance in pounds per inch (N/mm) from A2.4 divided by 5.0…”

The safety factor for withdrawal in ASTM D5456 matches that of AC 116, again justifying its applicability to this issue. ASTM D5456 does not have a comparable safety factor for lateral load resistance. In the absence of a standard that more specifically addresses this issue, ITS suggests that AC 116 is more appropriate.

Given the low C.O.V. of the web tensile test results, it is the opinion of ITS that a safety factor of approximately three is appropriate. ITS chose to use the lateral resistance factors of AC 116 for consistency.

CALCULATIONS:

1. **Web Tensile:** 842 lbs. x 0.75 = 631 lbs. (Proportional limit assumed to be the same as ultimate load – brittle failure)
 842 lbs. ÷ 3.2 = 263 lbs. (Based on average ultimate load)

2. **Fastener Testing:**
 (A) **Withdrawal Resistance:** Type “S” Screw \(F_{\text{allow}} = 178 \text{ lbs.} ÷ 5 = 35 \text{ lbs.} \)
 Type “W” Screw \(F_{\text{allow}} = 166 \text{ lbs.} ÷ 5 = 33 \text{ lbs.} \)

 (B) **Lateral Resistance:** Type “S” Screw \(F_{\text{allow}} = F ÷ 3.2 = 328 \text{ lbs.} ÷ 3.2 = 102.5 \text{ lbs.} \)
 Type “W” Screw \(F_{\text{allow}} = F ÷ 3.2 = 367 \text{ lbs.} ÷ 3.2 = 114 \text{ lbs.} \)
CONCLUSIONS:
Physical Properties of Polypropylene Reinforcing Webs

The polypropylene reinforcing webs were found to have the following allowable loads, as recommended by ITS when analyzed in accordance with ICC ES AC 116 (July 2001) “Acceptance Criteria for Nails and Spikes.” (The withdrawal resistance utilized a safety factor of five as per ICC ES AC 116, Section 4.2. The lateral resistance of both the Type “W” screws and the Type “S” screws utilize a safety factor of 3.2 when analyzed in accordance with ICC ES AC 116, Section 4.1):

- Withdrawal resistance of a Type “S” fine thread drywall screw is 35 lbs.
- Withdrawal resistance of a Type “W” coarse thread drywall screw is 33 lbs.
- Lateral resistance of a Type “S” fine thread drywall screw is 102 lbs.
- Lateral resistance of a Type “W” coarse thread drywall screw is 114 lbs.

The polypropylene reinforcing web tensile strength is recommended by ITS to be 263 lbs., based on a safety factor of 3.2 analyzed in accordance with ICC ES AC 116, Section 4.1. The maximum negative wind pressure for a cladding system attached to the EPS foam plastic panels is based on the maximum fastener values connected into the polypropylene reinforcing webs. For a screwed system into the webs, 8 inches on center vertically, and 6 inches on center horizontally, the allowable negative withdrawal is 99 lbs./ft². This withdrawal capacity can be converted to a wind speed based on the following formula extrapolated from the 1997 Uniform Building Code Table 16-F at a standard height of 33 feet:

\[q_s = K v^2 \]

where:
- \(q_s \) = wind pressure (lbs./ft²)
- \(v \) = basic wind speed (mph)
- \(K = 0.00256 \)

thus:
- \[v = (q_s / 0.00256)^{1/2} \]
given:
- \(q_s = 99 \text{ lbs./ft}^2 \) (allowable negative withdrawal)
then:
- \(v = 197 \text{ mph} \)

The objective of the test: to determine whether the polypropylene reinforcing web, a component of the form system, would melt out and cause a loss of support for the non-fire side standard ½-inch gypsum thermal barrier and consequently create a through opening in the concrete wall, and/or flaming of the polypropylene reinforcing web and expanded polystyrene foam on the unexposed side, or create openings in the concrete wall that would result in the ignition of cotton waste.

The April 23, 2002 Intertek Testing Services NA Ltd./Warnock Hersey fire test sample was constructed to be representative of the code requirements for a foam insulated concrete wall system. The Beaver Plastics Ltd. Insulating concrete form system was tested in accordance with UBC 26-3, “Room Fire Test Standard for Interior of Foam Plastic Systems,” [refer to ITS/Warnock Hersey report #3020964(a)] and met the conditions of acceptance for a 15-minute index.

CONCLUSIONS:
The Beaver Plastics Ltd. “Logix” insulating concrete forms (EPS) protected by a ½” standard gypsum wallboard thermal barrier met the criteria of acceptance of ASTM E119-98, “Standard Test Methods for Fire Tests of Building Construction and Materials” for a three-hour fire resistance rating. The polypropylene web did not melt out and did not cause a loss of support for the non-fire side standard ½” gypsum thermal barrier. As no through-openings developed in the concrete wall section, no possibility of ignition of cotton waste occurred. There was no occurrence of burn-through or through-openings in the concrete wall, nor was there flaming of the polypropylene web and expanded polystyrene foam on the unexposed side.

The Beaver Plastics Ltd. “Logix” insulating concrete forms (EPS) are consequently eligible for a three-hour fire resistance rating.

LIMITATIONS OF APPROVAL
The limitations below are in accordance with the current Wisconsin Uniform Dwelling Code (UDC), for 1 & 2 family dwellings:

- **Foam Plastic:** The ICF wall system is approved for use with a thermal barrier to separate the blocks from interior spaces in accordance with SPS 321.11(1). Where a 1-inch thickness of masonry does not separate the polystyrene blocks from the building interior, including at the top of the wall, a thermal barrier, which has a finish rating of at least 15 minutes, shall be provided.
 1. Logix Form Blocks are approved for use in combustible non-rated construction in accordance with SPS 321.11. In one- or two-family dwellings, thermal barriers shall be provided to separate the forms from the occupied space of the dwellings per SPS 321.11.
 2. The exterior face of the blocks shall be finished with an approved weather covering and must be protected from ultraviolet light.

- **Structural:** The Logix Form Blocks are approved as structural building elements.
 1. The units are approved for use as concrete forms for basement walls and exterior walls when the resulting concrete core thickness satisfies Table 321.18-B for one- or two-family dwellings, or when structural calculations for the product are submitted for review.
 2. Walls shall be anchored to all floors and roofs. Walls shall be interconnected at corners by embedding and lapping the reinforcement.
 3. Structures are limited to two stories in height.
 4. The forms are approved for use as concrete forms for basement walls, exterior walls and retaining walls when structural calculations are submitted to the local building inspector.
 5. Below grade walls shall be damp-proofed when required by the local building department.
 6. Damp-proofing and water-proofing materials shall be approved by AMC Foam Technologies, Inc. and the local building official, and shall be free of solvents that will adversely affect the EPS foam.

NOTE: The Logix Insulated Concrete Form Wall System was not evaluated for compliance with the thermal requirements of Subchapter III and IV of chapter SPS 322 provisions.

The 2015 IBC limitations below are in accordance with the 2018 Wisconsin Commercial Building Code:

- **Foam Plastic:** The Logix ICF wall system is approved for use with a thermal barrier to separate the blocks from interior spaces in accordance with IBC 2603.4.
 1. In accordance with IBC 2603.4.1.6, when the Logix ICF is used within the attic or crawl space where entry is made only for service utilities, the foam plastic insulation shall be protected against ignition by 1½” thick mineral fiber insulation, a ¼” thick wood structural panel, particleboard or hardboard, gypsum wallboard, corrosion-resistant steel or other approved material installed so that the foam plastic is not exposed.
 2. The protective covering shall be consistent with the requirements for the type of construction.
3. The crawl space shall not be used for storage or air handling purposes, there are no interconnected basement areas and entry to the crawl space is only for service of utilities.

4. The exterior face of the blocks shall be finished with an approved weather covering per IBC 1405.2 and must be protected from ultraviolet light per IBC 1404.13 & IECC C303.2.1.

- **Structural:** Design of concrete formed by Logix Forms must comply with IBC Chapter 19 with the following requirements:
 1. *The forms are approved for use as concrete forms for basement walls, exterior walls and retaining walls when structural calculations are submitted to the department by a Wisconsin registered professional engineer or architect.
 2. *Design calculations of walls must comply with section IBC 1901.2. Use of the empirical masonry design approach specified in IBC 2109.1 [SPS 362.2109] is prohibited.
 3. Design of lintels shall comply with the applicable provisions of IBC Chapter 16.
 4. Wall loading shall be in accordance with IBC Chapter 16.
 5. Minimum wall reinforcement shall conform to IBC 1901.2. When the code requires that vertical and horizontal reinforcement be spaced no further apart than 18 inches or three times the wall thickness, whichever is less, the maximum concrete wall thickness along the length of the wall is permitted to be used to determine rebar spacing.
 6. Walls shall be anchored to floors and roofs in accordance with IBC 1604.8.2. Walls shall be interconnected at corners by embedding and lapping reinforcement in accordance with the code.
 7. Design of shear walls shall be in accordance with sections IBC 1901.2 and 1905.
 8. Structures are limited to two stories in height plus a basement.
 9. Below grade walls shall be damp-proofed when required by the local building department. Water proofing shall be in accordance with IBC 1805.
 10. Damp-proofing and water-proofing materials shall be approved by AMC Foam Technologies, Inc. and the local building official, and shall be free of solvents that will adversely affect the EPS foam.
 11. Special inspection per IBC chapter 17 are not required when meeting these limitations:
 a) Wall systems are a maximum of 8 feet high and are limited to use in single-story construction of Group R-3, or Group U occupancies.
 b) Maximum height of a concrete pour is 48 inches. Succeeding lifts must be placed in accordance with ACI 318 as modified by IBC 1905.
 c) Installation is by properly trained installers approved by AMC Foam Technologies, Inc.
 d) The installation instructions indicate methods used to verify proper placement of concrete.
 12. Walls constructed with Logix ICF are considered Type V Construction.

Alternate Design: In lieu of calculations, the structural design of reinforced concrete formed by Logix Insulated Concrete Form Wall System insulated concrete form blocks for residential construction is permitted to comply with the Prescriptive Design of Exterior Concrete Walls for One- and 2-Family Dwellings (PCA 100), published by the Portland Cement Association (PCA). Buildings constructed with the Logix Insulated Concrete Form Wall System insulated concrete form system and designed in accordance with the alternate design, will not exceed a height of two stories plus a basement, where the maximum unsupported wall height is 10 feet.
NOTE: The Logix Insulated Concrete Form Wall System was not evaluated for compliance with the thermal requirements of IECC chapters C4 & R4.

Identification: Each package bears a label specifying the name and address of the manufacturer (AMC Foam Technologies, Inc., Headingley, MB R4H0A8, Canada). Additionally, product labels indicate the Wisconsin Building Product Evaluation Number and the name and logo of the quality control agency.

DISCLAIMER

This approval will be valid through December 31, 2024, unless manufacturing modifications are made to the product or a re-examination is deemed necessary by the department. The Wisconsin Building Product Evaluation Number must be provided when plans that include this product are submitted for review. This approval addresses only the specified applications for the product and does not waive any code requirement not specified in this document.

Reviewed by: ________________
Jack A. Miller

Approval Date: February 19, 2019 By: Jack A. Miller
Commercial building plan examiner and product reviewer