MID-RISE DESIGN & CONSTRUCTION

Insulated concrete forms (ICF) are becoming a main stream choice for the construction of mid-rise buildings. A prime example would be the city of Waterloo, Ontario, Canada, in which there have been over 100 ICF mid-rise buildings constructed in the last decade, with most located within a single square mile. And there are more and more being built throughout North America.

So what’s driving the use of ICF construction for mid-rise buildings? The bottom line is that there are inherent benefits to ICFs not found in conventional construction (wood, CMUs, and conventional poured-in-place concrete) that add up to savings for designers, builders and developers.

DESIGN
The inherent benefits of building with Logix that cannot be found with conventional construction makes it attractive to developers who get a faster return on their investment while producing a quality building.

Simple, fast and efficient to build with Logix makes mid-rise construction more cost effective compared to conventional construction - even allowing construction to continue through cold winter months.

In addition, the high energy efficient and airtight buildings that Logix naturally creates can significantly reduce heating and cooling costs.
Safety can also be a factor for developers. Logix mid-rise buildings are stronger and are more fire resistant than wood structures. During construction a wood building is more likely to collapse during a fire compared to buildings made of reinforced concrete.

Since Logix ICF are permanent formwork systems for reinforced concrete walls, the structural design of ICFs is based on the same design principles and design codes (ACI 318 and CSA A23.3) as conventional reinforced concrete structures. This makes it an easy transition from conventional concrete to ICFs for design engineers.

In addition, because the concrete is perpetually insulated, and protected from the elements, shrinkage and temperature cracks are reduced, which could reduce the amount of rebar required to control shrinkage and temperature cracks.

For architects, the added detailing required, including the costs of added materials and labor, to comply with the new, and more stringent, energy efficiency requirements increases with conventional construction. However, the high thermal insulation values inherent in Logix ICFs, including the thermal mass properties of concrete, can readily meet the new energy requirements without adding material costs or labor, and makes detailing less cumbersome.

Due to the thick rigid foam insulation, and mass properties of concrete, ICFs are also known to provide high STC values, and are commonly used not just for...
the exterior but interior or partition walls where high STC values are required.

CONSTRUCTION
For mid-rise buildings designers typically use ICFs to create the building’s shell, and interior walls where high STC values are required. Precast concrete floors, instead of poured-in-place, are often preferred to match the speed and efficiency of ICF construction.

With precast floors, no material and labor is required for shoring and formwork. The design detail between precast floors and ICF walls are also very similar to conventional concrete.

Punch out window designs are very cost effective with ICFs and optimize the wall to opening area ratio, which maximizes the building’s thermal performance. In addition, compared to wood buck, Logix Pro Bucks provide a faster install while creating a complete thermal break around openings.

Any type of exterior finish or attachment, such as brick, panels, stucco and siding, can be attached to Logix ICF. These are typically attached with fasteners to the polypropylene furring tabs embedded within the form panels.

However, for mid- to high-rise buildings designers typically prefer to fasten cladding directly into the concrete of the ICF wall. In the event of a fire or unusually strong winds, fastening direct to concrete
ensures the cladding material will not detach and fall from tall heights.

There are many other benefits that make Logix faster, easier and less labor intensive than conventional construction. This can add up to significant savings compared to wood, cmu or conventional concrete structures.

- Made primarily of rigid foam, Logix is extremely lightweight and durable. A typical Logix form, 16” tall x 48” wide, can weigh just a few pounds. This makes it faster and easier to work with than conventional construction. Also, Logix forms are erected with simple handset tools and so less skilled labor is often required.

- Reduces trades required on the job site. A typical Logix wall assembly combines six building components (concrete, rebar, insulation, air barrier, vapor barrier and furring strips) into a single building system that is efficiently installed all at once.

- Consistent curing of concrete walls. The concrete wall structure within Logix is perpetually insulated creating ideal curing conditions even during extreme temperature swings. During cold winters no additional protection from the elements or heating is required making it feasible to work during the winter season.
• **Reduces wood forming material and site waste.** The strength of Logix to resist form pressure comes from the thick rigid form panels held together with polypropylene cross ties. The forms are strong enough that conventional wood forming is not required.

• **User friendly.** To build a wall Logix ICFs are simply stacked in a running bond pattern - similar to building a wall with CMUs. Most construction crews are comfortable with ICFs with a day of training, and most masonry builders find the transition from CMU to ICFs quick and simple due to its similarity in building.

SPECIFIC LOGIX ICF PRODUCTS THAT ENHANCES SPEED & EFFICIENCY FOR MID-RISE CONSTRUCTION

Logix offers additional products that make it even faster and easier to design and construct Logix mid-rise buildings. For a full list of Logix ICF products and accessories visit logixicf.com and follow the “Technical Library” link.

Logix Pro Buck

Logix Pro Buck is designed to replace wood bucks and create a complete thermal break around window and door openings. Because wood bucks are not required, the savings in wood material and reduction in jobsite waste can add up for mid-rise construction.
Made of dense molded expanded polystyrene (EPS), Logix Bucks are durable and lightweight making it faster and easier to work with compared to wood bucks.

Designed to fit with Logix ICF, Logix Pro Bucks are easily secured around the window openings and provides plenty of fastening points for bracing and window/door framing.

Logix T-walls

Logix Standard forms can be easily cut to form t-wall junctions. However, for fast and efficient installation Logix also provides Logix T-wall ICFs. Logix T-walls are preformed ICFs that form t-wall junctions without the need to cut the ICFs, and requires less form support.

Logix Hybrid

Logix Hybrid is the construction of Logix walls made up of Logix Pro forms (assembled ICFs) and Logix Knock-down forms (Logix KD). Logix KD forms are ICFs assembled on the jobsite.

The majority of the wall may be built with Logix Pro forms to simplify construction and build efficiently. However, Logix KD forms ease ICF construction in places where heavy rebar congestion is encountered.
TYPICAL LOGIX MID-RISE DESIGN DETAILS

The following drawings show examples of typical architectural and structural details used in ICF mid-rise buildings. Although these details are common for ICF mid-rise construction, they are meant for information purposes only, and as a guide, for the designer/builder. More drawings from foundation to roof details can be found in the Logix Technical Library.

Logix also provides project specific technical support by providing on-site training, and assisting designers and builders to ensure they have the proper details required for their projects.

For more information contact your local Logix representative, or e-mail us at info@logixicf.com.
MID-RISE EXAMPLE DETAILS

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPICAL WALL SECTION MID-RISE CONSTRUCTION</td>
<td>1</td>
</tr>
<tr>
<td>PARKING GARAGE</td>
<td>2</td>
</tr>
<tr>
<td>EXTERIOR WALL SECTION - NONBEARING END</td>
<td>3</td>
</tr>
<tr>
<td>INTERIOR WALL SECTION - BEARING END</td>
<td>4</td>
</tr>
<tr>
<td>INTERIOR WALL SECTION - NONBEARING END</td>
<td>5</td>
</tr>
<tr>
<td>WALL TRANSITIONS</td>
<td>6</td>
</tr>
<tr>
<td>WALL TRANSITIONS</td>
<td>7</td>
</tr>
<tr>
<td>WALL TRANSITIONS - LOGIX T-WALLS</td>
<td>8</td>
</tr>
<tr>
<td>WALL TRANSITIONS</td>
<td>9</td>
</tr>
<tr>
<td>EXHAUST VENT</td>
<td>10</td>
</tr>
<tr>
<td>ROOF PARAPET</td>
<td>11</td>
</tr>
<tr>
<td>LOGIX PRO BUCK INSET WINDOW FLASHING</td>
<td>12</td>
</tr>
<tr>
<td>LOGIX PRO BUCK FLANGED WINDOW FLASHING</td>
<td>13</td>
</tr>
<tr>
<td>STUCCO & STONE VENEER FINISHES</td>
<td>14</td>
</tr>
<tr>
<td>STUCCO & STONE VENEER FINISHES</td>
<td>15</td>
</tr>
</tbody>
</table>

NOTES:
For a full list of available CAD details, including Logix ICF products and specifications, visit the Logix Technical Library at logixicf.com, or email info@logixicf.com.
The drawing represented herein is to be used as a reference guide only; the user shall check to ensure the drawing meets local building codes and construction practices by consulting local building officials and professionals, including any additional requirements. Logix reserves the right to make changes to the drawing without notice and assumes no liability in connection with the use of the drawing including modification, copying or distribution.
The drawing represented herein is to be used as a reference guide only; the user shall check to ensure the drawing meets local building codes and construction practices by consulting local building officials and professionals, including any additional requirements. Logix reserves the right to make changes to the drawing without notice and assumes no liability in connection with the use of the drawing including modification, copying or distribution.
The drawing represented herein is to be used as a reference guide only; the user shall check to ensure the drawing meets local building codes and construction practices by consulting local building officials and professionals, including any additional requirements. Logix reserves the right to make changes to the drawing without notice and assumes no liability in connection with the use of the drawing including modification, copying or distribution.

Drawing: 5.5.8
Date: Dec 10/15
Page: 3/15

Title: EXTERIOR WALL SECTION - NONBEARING END
NOTES:
Visit the Logix Technical Library at logixicf.com for more examples of different floor systems and connections.

The drawing represented herein is to be used as a reference guide only; the user shall check to ensure the drawing meets local building codes and construction practices by consulting local building officials and professionals, including any additional requirements. Logix reserves the right to make changes to the drawing without notice and assumes no liability in connection with the use of the drawing including modification, copying or distribution.
NOTES:
Visit the Logix Technical Library at logixicf.com for more examples of different floor systems and connections.

The drawing represented herein is to be used as a reference guide only; the user shall check to ensure the drawing meets local building codes and construction practices by consulting local building officials and professionals, including any additional requirements. Logix reserves the right to make changes to the drawing without notice and assumes no liability in connection with the use of the drawing including modification, copying or distribution.
NOTES:
Visit the Logix Technical Library at logixICF.com for more examples of wall transitions.
NOTES:
The Logix Technical Library at logixicf.com for more examples of wall transitions.
Place behind web and attach to horizontal rebar in adjoining wall. For more information see Logix Design Manual, Section 2.

Alternate directions in each course.

Field trim ICF to suit t-junction.

90° bent rebar, as per specs.

Short #3 (10M) bar See Section A-A

The drawing represented herein is to be used as a reference guide only; the user shall check to ensure the drawing meets local building codes and construction practices by consulting local building officials and professionals, including any additional requirements. Logix reserves the right to make changes to the drawing without notice and assumes no liability in connection with the use of the drawing including modification, copying or distribution.
TYPICAL INTERIOR NON-FIRE RATED PARTITION

STEEL STUDS
CAVITY INSULATION

TYPICAL 1 HR FIRE RATED UNIT SEPARATION PARTITION

FIELD TRIM FOAM AND EXTEND STUD WALL TO CONCRETE OF ICF

PROVIDE ACOUSTIC SEALANT OR SILL GASKET BETWEEN STEEL AND CONCRETE

TYPE X DRYWALL

TYPICAL 2 HR FIRE RATED UNIT SEPARATION PARTITION

FIELD TRIM FOAM AND EXTEND STUD WALL TO CONCRETE OF ICF

PROVIDE ACOUSTIC SEALANT OR SILL GASKET BETWEEN STEEL AND CONCRETE

TYPE X DRYWALL

TYPICAL FIRE RATED UNIT SEPARATION PARTITION

FIELD TRIM FOAM AND EXTEND STUD WALL TO CONCRETE OF ICF

BLOCK TIES SET INTO ICF FORMS PRIOR TO CONCRETE POUR

NOTES:
The Logix Technical Library at logixicf.com for more examples of wall transitions.
NOTES:
Visit the Logix Technical Library at logixicf.com for more examples of roof details.

The drawing represented herein is to be used as a reference guide only; the user shall check to ensure the drawing meets local building codes and construction practices by consulting local building officials and professionals, including any additional requirements. Logix reserves the right to make changes to the drawing without notice and assumes no liability in connection with the use of the drawing including modification, copying or distribution.
NOTES:
Visit the Logix Technical Library at logixicf.com for more examples of window details.
Sheathing tape over flashing tape

Flashing tape at header

Flashing tape at jambs over window flange

Flasnged window installed over flashing

Formable flashing over bevelled sill

NOTES:
Visit the Logix Technical Library at logixicf.com for more examples of window details.

The drawing represented herein is to be used as a reference guide only; the user shall check to ensure the drawing meets local building codes and construction practices by consulting local building officials and professionals, including any additional requirements. Logix reserves the right to make changes to the drawing without notice and assumes no liability in connection with the use of the drawing including modification, copying or distribution.
1. All fasteners to be attached to the embedded furring tabs.
2. Recommended min. fastener spacings:
 1. Grabber construction non-corrosive screws: No.8 min. 1.25" long, 8" o.c. horiz., 12" o.c. vert. spacing. (1/8" head ring shank nails with washers can be used in lieu of No.8 screws)
 OR
 2. Staples 1.59mm 16ga. min. 1.25" long, 8" o.c. horiz., 5" o.c. vert. spacing.
3. Always follow manufacturer's instructions or recommendations.
4. Visit Logix Technical Library at logixicf.com for more exterior finish examples.

NOTES:

1. If no base coat, fasten mesh to ICF with staples.
2. Follow manufacturer's installation instructions.
3. Visit the Logix Technical Library at logixicf.com for more exterior finish examples.
The drawing represented herein is to be used as a reference guide only; the user shall check to ensure the drawing meets local building codes and construction practices by consulting local building officials and professionals, including any additional requirements. Logix reserves the right to make changes to the drawing without notice and assumes no liability in connection with the use of the drawing including modification, copying or distribution.